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INTRODUCTION 

Fractional calculus is a robust and intensely 

active mathematical field. Fractional derivatives 

where originated by Leibniz [1], Riemann [2], 

Liouville [3] and developed by many other 

scientists (Machado et al. [4] have written a very 

interesting article on fractional calculus history). 

The main advantage of this topic is that it 

describes globally various phenomena with 

temporal or spatial dependence.  

On the other hand it seems to be a strong 

connection between fractional calculus and 

fractal geometry (Tatom [5]). Therefore that 

discipline is applied in many scientific areas, 

especially in physics [6,7,8,9,10] and mechanics 

[11,12,13,14].  

As far as mechanics is concerned, viscoelasticity 

is a favourite theme for fractional calculus. That 

subject shows temporal dependence and 

therefore is very suitable for fractional 

mathematical models.  

Many researches worked on that topic with 

success [15],[16]. On the other hand, 

Lazopoulos was the first who introduced 

Fractional derivatives in spatial dependent 

descriptions of materials [11]. 

The most famous fractional derivatives are 

Grünwald-Letnikov, Riemann-Lowville and 

Caputo derivative [8].  

These mathematical operators thought face a 

serious problem: They do not fulfill the 

properties of a derivative according to 

differential topology. Therefore many 

researchers tried either to tackle that problem, or 

prove that those derivatives cannot fulfill the 

necessary requirements in any way [17,18]. 

Lazopoulos and al. [12] proposed Leibnitz’ 

Fractional derivative that had already been 

introduced by Tarasov [23], in an effort to 

formulate fractional differential.   

Nevertheless, that derivative could not comply 

with the rest of requirements of differential 

topology, so they introduced a more efficient 

edition of L-fractional derivative, Λ-fractional 

derivative. The latter showed all the properties 

of a proper derivative and therefore it is suitable 

for mathematical analysis [19]. 

In the present article, field theory is studied with 

the help of Λ-fractional derivative. At first a 

brief introduction of the derivative is presented, 

then the Λ-fractional space is presented, where 

that derivative behaves as a conventional 

derivative, and finally the most fundamental 

field theorems are described with the help of 

that derivative.  

Then the results are pulled back to the initial 

space. Furthermore variational procedures with 

fractional multiple integrals are discussed with 

application to a vibrating string.   

THE Λ-FRACTIONAL DERIVATIVE  

A very brief outline of fractional calculus will 

be presented in the present chapter, while the 

interested reader is referred to refs.[6-10] for 

further information.  

In fact the left and right fractional integrals, for 

a real 0<γ≤ 1 are defined by,  
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γ is the order of fractional integrals with  where 

Γ(x)=(x-1)! with Γ(γ)  Euler’s Gamma function.       

Further, the left Riemann-Liouville fractional 

derivative is defined by:   
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whereas   the right Riemann-Liouville derivative is defined by: 
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Let us point out that for the left fractional integrals and derivatives  

   Dx
γ
 Ιa x

γ
f(x) = f(x)a

RL                             .                                                                                         (5) 

Similar relation is valid for the right Caputo 

derivative and right fractional integral.   

The L-fractional derivative (L-FD) has been 

defined as 
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Recalling the definition of the Riemann-Liouville fractional derivative, Eq.(3), the Λ-FD is expressed  

by, 
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The Λ-FD appears to behave as a conventional 

derivative in the fractional Λ-space (X, F(X)) 

with local properties.  In fact the Fractional 

Differential Geometry may be developed as a 

conventional differential geometry in the Λ-

fractional space, ( X, F(X)). 

Indeed, Eq.(8a) yields 

X =
x2−γ

Γ(3−γ)
                                                                                                                                          (9) 

Further, Eqs.(8b,9) suggest that: 

F x = Iα x
1−γ

f x =
1

Γ(1−γ)
 

f(s)

(x−s)γ
x

α
ds                                                                                           (10) 

Inverting  Eq.(9) it appears, 

x = (Γ 3 − γ Χ)1/(2−γ) = x(X)                                                                                                      (11) 

Proceeding further to the definition of the 

fractional Λ-space, inserting x(X) into Eq.(10), 

the function F(x)  may be expressed as a 

function of  X.  

F X = F x X                                                                                                                                 (12) 
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Let us point out that the Λ-FD is defined as 
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It will be clarified in the application, how from the initial space (x, f(x)) the fractional Λ-space  (X, 

F(X)) is defined.  

Further the pull back of the results in the initial space will also be indicated.  

 GEOMETRY IN THE Λ-FRACTIONAL SPACE 

Just to understand what happens in the Λ-fractional space, the geometry of the surface, 

 z=x2y2,0<x<1,0<y<1                       (14)                                   

 will be discussed. 

            

 

Figure1. The surface z 

The fractional Λ-space (X,Y,Z) is defined by, 

  X =
x2−γ

Γ(3−γ)
                                                                                                                                         (15) 

   Y =
y2−γ

Γ(3−γ)
                                                                                                                                        (16) 

 Z = Ib y
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Iα x
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z x, y =
1
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z(s,t)
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x

α

y

b
ds)
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With a=b=0 , Eq.(17) yields, 

Z = (−
2(XΓ[3−γ])

1
2−γ )3−γ

Γ[4−γ]
∗ Y)                                                                                                              (18) 

For γ=0.6, the surface Z in the Λ- fractional space is defined by 

Z=0.947X1.714Y1.714                                                                                                           (19) 

and it is shown in Fig. 2. 

  

Figure2. The surface Z in the Λ- fractional space 
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Further, the tangent space of the surface with γ=0.6, at the point X=Y=0.6 is defined by, 

Z = (0.947X1.714Y1.714 ) X=Y=0.6 +
dZ X=Y=0.6 

dX
 Χ − 0.6 +  

dZ X=Y=0.6 

dY
 Y − 0.6            (20)                                            

and finally the equation of the tangent space in the Λ-fractional space,  

Z=0.164+0.469(Φ-0.6)+0.469(Υ-0.6)                                                                                         (21) 

  

Figure3. The surface with the tangent space in the Λ-fractional space 

The corresponding surface in the initial space to the tangent plane in the Λ-fractional space is defined 

by, 

z= x2y2
 x=y=0.81 +  D0

RL
y=0.81
1−γ

D0
RL

x=0.81
1−γ

 
dZ

dX
   X x − 0.6) +                  

                     D0
RL

y=0.81
1−γ

D0
RL

x=0.81
1−γ

 
dZ

dY
   Y y − 0.6)                                                                      (22) 

The surface defined by Eq.(22) is shown in Fig. 4 

 

Figure4. The surface with its tangent surface at the point (x=y=0.8106) at the initial space 

It seems that the initial surface and the tangent 

surface corresponding to the tangent space at the 

Λ-space have almost common tangent plane in 

the initial space.  

THE FRACTIONAL FIELD THEOREMS 

The conventional field theorems are expressed 

by: 

Green’s Theorem 

Let Qx(x,y), Qy(x,y),be smooth real functions in 

a domain Ω, with its boundary a smooth closed 

curve 𝜕𝛺. Then, 

  Qxdx + Qy dy 
∂Ω

=  dxdy 
dQx

dy
−

dQy

dx
 

Ω
                 

.                                      (23) 
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Corollary 

When  Qx(x,y), Qy(x,y), are derived by a 

potential function Φ(x,y) with Qx =
dΦ

dx
, Qy =

dΦ

dy
,   the  RHS of Eq     (23)                        

becomes zero.  

That means that the curvilinear integral along a 

closed smooth boundary is zero.  

 

Stoke’s Theorem 

For a smooth vector field F defined on a simple 

surface Ω with the boundary ∂Ω, Stoke’s 

theorem is expressed by,  

  F, dL =  (∇ ×
Ω∂Ω

F, dS)                    (24)                                           

where, (∙,∙)  denotes the  scalar product.                                             

The Gauss’ (Divergence) Theorem 

For  a space region Ω with smooth surface 

boundary ∂Ω, the volume integral of a the 

divergence of a vector field F over Ω is equal to 

the surface integral of F over the boundary ∂Ω: 

  F, dS =  ∇ ∙
Ω∂Ω

F dΩ                          (25)                                                         

Although the field theorems are valid in the 

fractional Λ-space, they are not necessarily valid 

in the initial space. Nevertheless the results from 

the Λ- space may be pulled back to the initial 

space. The application that follows indicates the 

procedure.  

Application (Green’s Theorem) 

Let us consider a rectangle with lx=1, ly=0.5. 

That rectangle is configurated in the fractional 

Λ-space with, Eq.(15,16): 

Lx =
lx

2−γ

 2−3γ+γ2 Γ(1−γ)
                 ,  Ly =

ly
2−γ

 2−3γ+γ2 Γ(1−γ)
                                                                    (26)      

For γ=0.6 ,  Lx=0.8050,     Ly=0.3050 . Further considering in the potential function, 

 Φ(Φ,Υ)=Φ3Υ2                                                                                                                      (27) 

The  

Qx =
∂Φ

∂x
= 3X2Y2     ,   Qy =

∂Φ

∂y
= 2X3Y                                                                                         (28)     

According to the corollary of the Green’s theorem, the curvilinear integral of Eq.(23) is zero in the Λ-

space. Considering Eqs.(15,16) 

Qx =
3 x4−2γ y4−2γ

  2−3γ+γ2 Γ(1−γ) 
4       ,  Qy =

2 x6−3γ y2−γ

  2−3γ+γ2 Γ(1−γ) 
4                                                                       (29) 

  Further, the corresponding functions in the initial space (x,y,z)  are: 

qx = D0
RL

y
1−γ

( D0
C

x
1−γ

(Qx x, y ), qy= D0
RL

y
1−γ

( D0
C

x
1−γ

(Qy x, y ) (30) 

where, Riemann-Liouville fractional derivative is given by Eq.(3). Considering γ=0.6 and performing 

the algebra with the help of Mathematica computerized algebra pack [20], we get 

qx=3.124 x2.4y2.4    ,   qy=1.906x3.8y                                                                                (31)                                                  

Although qx, qy  may be derived by a conventional potential function, the fractional curvilinear 

fractional integral  along the boundary of the rectangle is different from zero. In fact computing the 

fractional curvilinear integral with γ=0.6 along the boundary of the rectangle with  0<x<1 and 

0<y<0.5 we get, 

Ic
γ

= 0.14564 ≠ 0                                                                                                                              (32). 

Therefore the fractional Green’s formula is not valid in the initial space. However, it is valid in the 

fractional Λ- space, where the fractional analysis and the fractional geometry follow the conventional 

rules. 

FRACTIONAL MULTIPLE INTEGRALS AND CALCULUS OF VARIATIONS  

Since in the fractional Λ-space everything behaves conventionally, the variations of multiple integrals 

follow the well known common procedure, Weinstock [21]. Hence for a double integral in the 

fractional Λ-space, 

I =  L X, Y, W, WX , WY dXdY
Ω

                                                                                                       (33) 
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yields the extremizing function, 

∂L

∂W
−

∂

∂X
 

∂L

∂W X
 −

∂

∂Y
 

∂L

∂W Y
 = 0                                                                                                        (34)         

along with the condition,    

∂L

∂W X

dY

dX
−

∂L

∂W Y
= 0                                                                                                                              (35) 

On the boundary C. 

Application  

The vibrating string .Following Weinstock 

[21] the equation of motion for a string is 

defined by Hamilton’s principle extremizing the  

I =   T − V dt =
1

2

t2

t1
   σ

∂2y

∂t2 −
L

0

t2

t1

τ∂2y∂x2 dxdt                               (36) 

where σ(x) the density per unit length and τ is 

the tension along the string. Then the equation 

of motion of the string is defined by, see 

Weinstock [21], 

∂2y

∂t2 = a2 ∂2y

∂x2                  (37) 

where a2=
τ

σ(x)
  . 

For the present case a string, infinitely long has 

one end at x=0. The string initially rests on the x 

–axis. The end x=0 is subjected to transverse 

displacement that in the Λ-space is given by, 

Α0sin(ωΤ).  Find the displacement of any point 

on the string at any time.  

Solution: If  Y(X,T) is the transverse 

displacement of the string,  then the boundary-

value problem is defined by, 

∂2Y

∂T2 = a2 ∂2Y

∂X2                (38) 

with the boundary and initial conditions 

Y(X,0)=0,YT(X,0)=0,Y(0,T)=A0sint(ωT),  (39)                                                      

with Y(X,T) bounded and a constant. For having 

a constant Σ(Φ) corresponding to σ(x) should be 

constant. Indeed, if  

σ(x)= 
δ

I0 x
1−γ

1
= δ Γ(2 − γ)x1−γ                    (40)                                                                                  

It is evident that the zero initial conditions in the 

Λ-space correspond to zero ones in the initial 

space (x, y, t). However the boundary condition 

in the Λ- space corresponds to the boundary 

condition in the initial space, defined by: 

y 0, t = D0
C

t
1−γ

 A0sin  ω
t2−γ

 2−3γ+γ2 Γ(1−γ)
          

(41)                                                

Where according to Eq.(3), the Caputo 

derivative is equal to: 

 

D0
C

t
1−γ

f t =
1

Γ γ 
 

f s −f(0)

(t−s)1−γ

t

0
dt                    (42)                                                                     

 For A0=ω=1 and γ=0.6, the boundary condition 

y(0,t) , Eq.(41), has been computed, in the initial 

space, with the help of the Mathematica pack 

and is shown in Fig. 5 

 

Figure5. The initial condition in the initial space 

The problem has been solved in the fractional 

Λ-space using Laplace’s transformation and 

the solution may be found in [22] p.224. The 

solution is defined through Laplace’s 

transformation as: 

Y(X,T)= A0sin(ωT-X/a)  for  T>X/a       (43)                                                                                  

=  0                       for  T<X/a 

Let us remind that , Eq.(9), 



On Λ-Fractional Field Theorems 

International Journal of Research Studies in Science, Engineering and Technology V8 ● I1 ● 2021         36 

  X =
x2−γ

 2−3γ+γ2 Γ(1−γ)
 =0.805 x1.4 ,      

T =
t2−γ

 2−3γ+γ2 Γ(1−γ)
 =0.805t1.4                 (44 ) 

Hence, 

Y(x,t)=A0sin(0.805(ωt1.4-x1.4/a))        (45)                                                                      

According to the theory, the displacement of 

the string in the initial space is defined by, 

y x, t = D0
C

t
1−γ

D0
C

x
1−γ

Y(x, t)                    (46)            

Furthermore, the displacement y(x,t) has been 

computed trough the Mathematica 

computerized pack and is shown in Fig.6  with 

A0=ω=a =1 and γ=0.6.   

                                                                                                                                   

 

Figure6. The displacement y(x,t) of the string 

CONCLUSION  

The fractional field theorems have been 

discussed in the context of the fractional Λ-

derivative and the corresponding fractional Λ-

space. Since the fractional Λ- derivative behaves 

in the conventional way in the Λ- space, the 

analysis concerning the geometry and the field 

theorems is developed in the Λ-space. The 

results are transferred back to the initial space 

through the Caputo derivative. Furthermore, 

variational methods may be applied in the Λ-

fractional space in the conventional way and 

then the results may be pulled back to the initial 

space.  
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