
International Journal of Research Studies in Science, Engineering and Technology
Volume 6, Issue 11, 2019, PP 53-73
 ISSN 2349-476X
DOI: https://doi.org/10.22259/2349-476X.0611006

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 53

A Survey on Algorithms for Reinforcement Learning
Motumarri Jahnavi1, Palla Swathi1, Dr. Bheemalingaiah2

1CSE Department,Malineni Lakshmaiah Women”s Engineering College, Guntur, AP

2Associate Professor, CSE Department, Malineni Lakshmaiah Women”s Engineering College,

Guntur, AP

OVERVIEW

Reinforcement learning (RL) is a learning

issue as well as a machine learning subfield. It

refers to learning to operate a system in order

to maximise some numerical value that

indicates a long-term goal as a learning

problem. Figure 1 depicts a typical situation in

which reinforcement learning takes place: A

controller is given the state of the controlled

system as well as a reward for the most recent

state shift. It then calculates and sends back an

action to the system. The system responds by

transitioning to a new state, and the cycle

begins again. The challenge is to figure out

how to regulate the system in such a way that

the total reward is maximised. The details of

how the data is obtained and how performance

is judged differ between the learning

challenges.

We assume in this book that the system we

want to govern is stochastic. Furthermore, we

assume that the measurements of the system's

state are sufficiently detailed for the controller

to avoid having to reason about how to acquire

information about the system state. Markovian

Decision Processes are the ideal framework for

describing problems with these properties

(MDPs). Dynamic programming, which turns

the challenge of finding a good controller into

the problem of finding a good value function,

is the typical method for'solving' MDPs.

However, except in the simplest circumstances

when the MDP has a small number of states

and actions, dynamic programming is not

recommended.

The challenge of finding a good controller is

transformed into the problem of finding a good

value function. Dynamic programming, with

the exception of the simplest scenarios when

the MDP has a small number of states and

actions, is not possible. The RL algorithms

we'll talk about here are a technique of turning

infeasible dynamic programming methods into

workable algorithms that may be used to solve

large-scale issues.

The ability of RL algorithms to achieve this

goal is based on two essential concepts. The

first approach is to use samples to express the

dynamics of the control problem in a concise

manner. This is significant for two reasons:

first, For starters, it enables dealing with

learning circumstances in which the dynamics

are uncertain. Second, even if the dynamics

are favourable, The use of sophisticated

ABSTRACT

Reinforcement learning is a learning paradigm that focuses on teaching a system how to govern itself in

order to optimise a numerical performance measure that represents a long-term goal. Reinforcement

learning differs from supervised learning in that the learner receives only partial feedback on his or her

predictions. Furthermore, through in uencin gth efutur estat eo fth econtrolle dsystem, the forecasts may

have long-term eects. The goal in reinforcement learningis to develop cient learning algorithms, as well as

to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of

the large number of practical applications that it can be used to address, ranging from problems in articial

intelligence to operations research or control engineering. In this book, we focus on those algorithms of

reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly

comprehensive catalog of learning problems

Keywords: reinforcement learning; Markov Decision Processes; temporal difference learning; stochastic

approximation; two-timescale stochastic approximation; Monte-Carlo meth- ods; simulation optimization;

function approximation; stochastic gradient methods; least- squares methods; overfitting; bias-variance

tradeoff; online learning; active learning; plan- ning; simulation; PAC-learning; Q-learning; actor-critic

methods; policy gradient; natural gradient.

A Survey on Algorithms for Reinforcement Learning

54 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

function approximation methods to compactly

describe value functions is the second

important notion behind RL algorithms. This

is significant because it enables for the

manipulation of huge, high-dimensional state

and action spaces. Furthermore, the two

concepts are complementary: Samples may be

concentrated on a tiny subset of the spaces to

which they belong, which creative function

approximation techniques could exploit. The

heart of creating, assessing, and using RL

algorithms is an understanding of the interplay

between dynamic programming, sampling, and

function approximation.

The goal of this book is to provide the

reader with a glimpse into this lovely field.

We are, however, far from the first to set out

to achieve this goal. In The book Bertsekas

and Tsitsiklis (1996), which explored the

theoretical basis, was published after that.

Sutton and Barto, the RL'fathers,' published

their book a few years later, in which they

expressed their ideas on RL in a very clear

and approachable manner (Sutton and Barto,

1998). Bertsekas' two-volume book

(2007a,b), which devotes one chapter to RL

approaches, provides a more modern and

complete review of the tools and techniques

of dynamic programming/optimal control. 1

When a field is fast evolving, books might

become out of date very quickly. In fact,

Bertsekas maintains an online version of

Chapter 6 of Volume II of his book to keep

up with the rising body of new findings.

Chang et al. (2008) concentrates on adaptive

sampling (i.e., simulation-based

performance optimization), whereas

Busoniu et al. (2010) recently published a

book on function approximation. As a result,

RL researchers have access to a substantial

body of literature. What appears to be

lacking, however, is a self-contained and yet

relatively brief summary that can assist

newcomers to the field in developing a good

sense of the state of the art, as well as

existing researchers in broadening their field

overview, an article similar to Kaelbling et

al. (1996), but with updated contents. This

small book's sole objective is to fill this

void. We had to make a few, hopefully not

too troubling compromises in order to keep

the content short. We originally made a

compromise by simply presenting data for

the total expected discounted reward

criterion. This decision is driven by a

number of factors. The background on

MDPs and dynamic programming is kept

ultra-compact as the next compromise

(although an appendix is added that explains

these basic results). Apart from that, the

book strives to cover a little bit of

everything related to RL, to the point that

the reader should be able to comprehend the

whats and hows, as well as apply the

algorithms provided. Naturally, we had to be

picky about what we showed. The choice

was made to concentrate on the fundamental

algorithms, ideas, and theories accessible at

the time. The user's choices, as well as the

compromises that come with them, were

described with special care. We tried to be

as objective as possible, but some personal

issues came up.

Advanced undergraduate and graduate

students, as well as academics and

practitioners who want a brief review of the

state of the art in RL, are the intended

audience. Researchers who are currently

working on RL may find it interesting to

read about aspects of the literature that they

are unfamiliar with, in order to widen their

RL perspective. It is assumed that the reader

is familiar with the fundamentals of linear

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 55

algebra, calculus, and probability theory.

We presume that the reader is familiar with

random variables, conditional expectancies,

and Markov chains, among other ideas. The

reader should be familiar with statistical

learning theory, although it is not required,

as the main concepts will be explained as

needed. Knowledge of machine learning

regression techniques will be relevant in

several portions of the book.

This book is divided into three sections. We

offer the essential background in the first

section, Section 2. The notation is

introduced here, followed by a brief

explanation of Markov Decision Process

theory and a discussion of the fundamental

dynamic programming techniques. Readers

who are familiar with MDPs and dynamic

programming should scan through this

section to get a feel for the notation. Readers

who are unfamiliar with the subject. When it

comes to MDPs, it's important to spend

enough time here before going on because

the rest of the book is mainly based on the

findings and ideas offered here. The

remaining two components are divided into

two pieces, one for each of the two basic RL

issues (see Figure 2). The difficulty of

learning to predict values linked with states

is examined in Section 3. We begin by

outlining the fundamental concepts for the

so-called tabular scenario, in which the

MDP is small enough that one value per

state may be stored in an array created in the

main memory of a computer. The first

algorithm discussed is TD(, which can be

seen of as a learning equivalent to dynamic

programming's value iteration. Following

that, we analyse the more difficult issue in

which there are more states than can be

stored in a computer's memory. Clearly, the

table holding the values must be compressed

in this scenario. In a broad sense, this

Following that, three new gradient-based

approaches (GTD2 and TDC) are described,

which can be thought of as enhanced

versions of TD() in that they avoid some of

the convergence issues that TD() has. The

least-squares approaches (namely, LSTD()

and -LSPE) are next discussed and

compared to the incremental methods

outlined above. Finally, we discuss the

various options for implementing function

approximation as well as the tradeoffs that

these options entail.

The second section (Section 4) is devoted to

control learning algorithms. First, we'll go

through some strategies for improving

online performance. We present the

"optimism in the face of uncertainty"

principle in particular, as well as ways for

exploring their environment based on it.

Algorithms that are cutting-edge are The

remainder of this section is focused to

strategies aimed at developing methods for

large-scale applications. Because learning in

large-scale MDPs is more challenging than

learning in small-scale MDPs, the learning

aim is lowered to learning a good enough

policy in the limit. To begin, direct

approaches are explored, which try to

directly estimate the optimal action-values.

These can be thought of as the learning

analogue of dynamic programming's value

iteration. The description of actor-critic

approaches follows, which can be

considered of as the dynamic programming

counterpart of the policy iteration process.

Both direct policy improvement and policy

gradient (i.e., using parametric policy

classes) strategies are discussed.

A Survey on Algorithms for Reinforcement Learning

56 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

MARKOV DECISION PROCESSES

The objective of this section is to introduce the

notation that will be used in the following

sections, as well as the most important facts

from the theory of Markov Decision Processes

(MDPs) that we will need throughout the rest

of the book. Readers who are already familiar

with MDPs should scan through this part to

get a feel for the notation. Readers who are

unfamiliar with MDPs should devote enough

time to this section to grasp the details.

Appendix A contains proofs of the majority of

the results (with some simplifications). If you

want to understand more about MDPs, you

should read one of the many good works on

the subject, such as Bertsekas and Shreve

(1978), Puterman (1994), or the two-volume

book by Bertsekas and Shreve.

Preliminaries

The set of natural numbers is denoted by N: N

= 0, 1, 2, etc., whereas the set of real numbers

is denoted by R. A column vector is denoted

by the symbol v (unless it is transposed, in

which case it is denoted by vT). (u, v) = d uivi

is the inner product of two finite-dimensional

vectors, u, v Rd. ||u||2 =(u, u). ||u||a =

maxi=1,...,d |ui| defines the maximal norm for

vectors. while f = supxX |f (x)| is the definition

of a function f: X R. Lipschitz with modulus L

R is a mapping T across the metric spaces

(M1, d1), (M2, d2) if for each a, b M1, d2(T

(a), T (b)) Ld1 (a, b). T is Lipschitz if the

modulus L is less than one is referred to as

Markov Decision Processes

We limit our discussion to countable MDPs

and the discounted total anticipated reward

requirement for clarity. The results, however,

also apply to continuous state-action MDPs

under certain technical conditions. This is also

true of the findings reported in the book's later

chapters. A countable MDP is defined as M =

(X, A, P0), where X denotes the countable

non-empty set of states and A is the countable

non-empty set of actions. P0(|x, a) P0(|x, a)

P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a) P0(|x,

a) P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a) P0(

|x, a) P0(|x The following is P0's semantics:

P0(U|x, a) yields the chance that the next state

and the next state and the next state and the

next state and the next state and the next state

and the next state and the next state and the

next state and the next state and the next state

and the next state and the next state. For

clarity, we will only address countable MDPs

and the discounted total projected reward

need. However, under specific technical

conditions, the results also apply to continuous

state-action MDPs. This holds true for the

conclusions presented in the book's subsequent

chapters.

M = (X, A, P0) is a countable MDP, with X

being the countable non-empty set of states

and A denoting the countable non-empty

collection of actions. |x, a) P0(|x, a) P0(|x, a) P

|x, a) P0(|x, a) P0(|x, a) P |x, a) P0(|x, a) P0(|x,

a) P |x, a) P0(|x, a) P0(|x, a) P |x, a) P0(|x, a)

P0(|x, a) P P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a)

P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a) P0(|x,

P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a)

P0(|x, a) P0(|x, a) P0(|x, a P0's semantics are

as follows: P0(U|x, a) gives the probability

that the next state and the next state will occur.

P(x, a, y) = P0({y} × R | x,

a).

In addition to P, P0 also gives rise to the

immediate reward function r : X × A → R,

whichgivestheexpectedimmediaterewardrec

eivedwhenactionaischoseninstatex:If

(Y(x,a),R(x,a))∼P0(·|x,a),then

r(x, a) = E
Σ

R(x,a)

Σ
.

We'll assume that the rewards are bounded by

some number R > 0 in the following: for any

(x, a) X A, |R(x,a)| R virtually certainly. 3 It

follows that if the random rewards are

constrained by R, then r = sup(x,a)X A |r(x, a)|

R also holds. If both X and A are finite, the

MDP is called finite.

Markov Decision Processes are a modelling

method for sequential decision-making

situations in which a decision maker interacts

with a system in a sequential manner. This

interaction occurs when an MDP M is used:

Let t N be the current time (or stage), and Xt X

be the current state.

The random state of the system and the action

taken by the decision maker at time t are

denoted by and At A, respectively. Once the

action has been chosen, it is submitted to the

system, which performs the following

transition:

(Xt+1,Rt+1)∼P0(·|Xt,At). (1)

Xt+1 is a random number, and P (Xt+1 = y|Xt

= x, At = a) = P(x, a, y) holds for any x, y X,

an A. In addition, E [Rt+1|Xt, At] = r (Xt, At).

After that, the decision maker observes the

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 57

next state Xt+1 and rewards Rt+1, selects a

new action At+1 A, and repeats the process.

The decision maker's purpose is to devise a

method of selecting actions that maximises the

projected total discounted reward.

Based on the observed past, the decision

maker can choose its actions at any time. A

behaviour is a rule that describes how the

actions are chosen. A random state-action-

reward sequence is defined by the decision

maker's behaviour and some beginning

random state X0. and At∈ A denote the random

state of the system and the action chosen by

the decision maker at time t, respectively.

Once the action is selected, it is sent to the

system, which makes a transition:

(Xt+1,Rt+1)∼P0(·|Xt,At). (1)

In particular, Xt+1 is random and P (Xt+1=

y|Xt= x, At= a) = P(x, a, y) holds for any

x, y ∈ X , a ∈ A. Further, E [Rt+1|Xt, At] =

r(Xt, At). The decision maker then observes

the next state Xt+1 and reward Rt+1, chooses a

new action At+1∈A and the process is

repeated. The goal of the decision maker is

to come up with a way of choosing the

actions so as to maximize the expected total

discounted reward.

Based on the observed past, the decision

maker can choose its actions at any time. A

behaviour is a rule that describes how the

actions are chosen. A random state-action-

reward sequence ((Xt, At, Rt+1); t 0) is

defined by a decision maker's behaviour and

an initial random state X0, where (Xt+1,

Rt+1) is connected to (Xt, At) by (1) and At

is the action prescribed by the behaviour

based on the history X0, A0, R1,..., Xt1,

At1, Rt, Xt. 4 The whole discounted sum of

the benefits incurred is defined as the return

underlying a behaviour:

∞

R= γtRt+1.

t=0

As a result, if 1, incentives received in the

future will be valued exponentially less than

those obtained at the beginning. A discounted

reward MDP is one in which the return is

defined by this formula. The MDP is said to be

undiscounted when it equals 1.

Regardless of how the process begins, the

decision-purpose maker's is to adopt a

behaviour that maximises the expected return.

It is argued that such maximising behaviour is

optimal. Example 1 (lost sales and inventory

control): Consider the difficulty of maintaining

day-to-day inventory control in the face of

fluctuating demand: Every evening, the

decision maker must determine the number of

goods to be ordered for the following day. The

ordered quantity arrives in the morning, and

the inventory is replenished. Some stochastic

demand is realised during the day, where the

demands are independent and have a similar

fixed distribution, as shown in Figure 3. The

inventory manager's purpose is to manage the

inventory in such a way that the present

monetary worth of the predicted total future

income is maximised.

At time step t, the payment is calculated as

follows: The cost of purchasing At items is

calculated as KIAt>0 + cAt. As a result, there

is a fixed entry fee K. proportionality factor h

> 0 of the inventory Finally, when z units are

sold, the manager gets paid the sum of p z,

where p > 0. We need p > h to make the

challenge interesting; otherwise, there will be

no motivation to order new products.

As an MDP, this problem can be expressed as

follows: Allow the size of the inventory in the

evening of day t 0 to be the state Xt. As a

result, X = 0, 1,..., M, with M N being the

maximum inventory size. The action At

returns the number of products ordered on day

t's evening. As a result, we can choose A = 0,

1,..., M because orders larger than the

inventory do not need to be considered.

 Xt+1 = ((Xt+ At) ∧ M−Dt+1)+, (2)

where a ∧ b is a shorthand notation for the

minimum of the numbers a, b, (a)+ = a ∨0 =

max(a, 0) is the positive part of a, and

Dt+1∈N is the demand on the (t + 1)thday.

By assumption, (Dt; t >0) is a sequence of

independent and identically distributed

(i.i.d.) integer-valued random variables. The

revenue made on day t

A Survey on Algorithms for Reinforcement Learning

58 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

t

One of the many operations research

challenges that leads to an MDP is inventory

control. Other issues include transportation

system optimization, timetable optimization,

and production optimization. Many

engineering optimal control issues, such as the

optimal control of chemical, electrical, or

mechanical systems, naturally involve MDPs

(the latter class includes the problem of

controlling robots). MDPs can be used to

illustrate a variety of information theory

challenges (e.g., optimal coding, optimising

channel allocation, or sensor networks).

Finance is another significant source of issues.

Optimal portfolio management and option

pricing are examples of these.

The MDP was readily specified by a transition

function f (cf., (4)) in the instance of the

inventory control problem. In fact, transition

functions are as powerful as transition kernels:

any MDP gives rise to some transition

function f, and any MDP gives rise to some

transition function f.

Not all acts are important in all states in some

problems. Ordering more things than one has

place for in the inventory, for example, is

counterproductive. Such meaningless (or

forbidden) acts, on the other hand, can always

be remapped to other actions, as seen above.

This is unnatural in some circumstances and

leads to a tangled web of dynamics. Then it

could be a good idea to add an extra mapping

that assigns the set. Some statuses are

impossible to depart in some MDPs: If x is

such a state, Xt+s = x virtually certainly holds

for any s 1 as long as Xt = x, regardless of

what actions are chosen after time t. By

convention, we'll suppose that in such terminal

or absorbing situations, no reward is incurred.

Episodic MDPs are those that have such states.

The (usually random) time period from the

beginning of time until a terminal condition is

attained is referred to as an episode. We

frequently consider undiscounted incentives in

an episodic MDP, i.e. when.

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 59

Exercising 2 (Gambling): A gambler

participates in a game in which she can bet any

fraction of a dollar. Xt 0 at [0, 1] of her present

fortune She reclaims her stake and doubles it.

Xt+1= (1 + St+1At)Xt.

Here (St; t ≥ 1) is a sequence of independent

random variables taking values in {−1, +1}

withP(St+1=1)=p.Thegoalofthegambleristomaxi

mizetheprobabilitythatherwealth

reachesanapriorigivenvaluew∗>0.Itisassumedth

attheinitialwealthisin[0,w∗].

This problem can be represented as an

episodic MDP, where the state space is X = [0,

w∗]

The reader inexperienced with MDPs could

believe that all MDPs come with useful finite,

one-dimensional state- and action-spaces

based on two examples shown so far. If only it

were so! In practise, state- and action-spaces

are frequently vast, multidimensional spaces in

practical applications. The dimensionality of

the state space in a robot control application,

for example, can be 3—6 times the number of

joints the robot has. The state space of an

industrial robot may easily be 12—20

dimensions, whereas the state space of a

humanoid robot could easily be 100

dimensions. Items would have numerous types

in a real-world inventory control application,

and prices and costs would change based on

the state of the "market," whose condition

would therefore form part of the inventory

control application.

Value Functions

The most obvious technique to determine an

optimal behaviour in an MDP is to list all

possible behaviours and then pick the ones that

yield the best value for each beginning state.

This approach isn't feasible because there are

too many behaviours in general. Calculating

value functions is a superior technique. In this

method, one first computes the so-called

optimal value function, which then allows for

the very simple determination of an ideal

behaviour. When the process is initiated from

state x, the optimal value, V(x), of state x X

delivers the highest feasible expected return.

The optimal value function V: X R is named

after it.

 Function a behaviour is optimal if it reaches

the ideal values in all states. Deterministic

stationary policies are a unique type of

behaviour that, as we'll see shortly, play a

crucial part in MDP theory. They are defined

by a mapping that connects states to actions

(i.e., X A). The action At is selected using the

following at any time t 0.

At=(Xt).(6)

More generally, a stochastic stationary policy

(or just stationary policy) π maps states to

distributions over the action space. When

referring to such a policy π, we shall use π(a|x)

to denote the probability of action a being

selected by πinstatex. Note that if a stationary

policy is followed in an MDP, i.e.,if

At∼π(·|Xt), t ∈N,

A (time-homogeneous) Markov chain will be

used to represent the state process (Xt; t 0).

The set of all stationary policies shall be

referred to as stat. For the sake of brevity, we'll

refer to "policy" rather than "stationary policy"

throughout the following, in the hopes that this

won't cause any confusion.

A Survey on Algorithms for Reinforcement Learning

60 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

A Markov reward process (MRP) is induced

by a stationary policy and an MDP: M = (X,

P0), where P0 now assigns a probability

measure across X R to each state, determines

an MRP. The stochastic process ((Xt, Rt+1); t

0) is generated by an MRP M, where (Xt+1,

Rt+1) P0(| Xt). (Note that (Zt; t 0), Zt = (Xt,

Rt) is a time-homogeneous Markov process,

where R0 is an arbitrary random variable, and

((Xt, Rt+1) is a time-homogeneous Markov

process, where R0 is an arbitrary random

variable.)

with the understanding that I the process (Rt; t

1) obtained while following policy is the

"reward-part" of the process ((Xt, At, Rt+1); t

0), and (ii) X0 is chosen at random such that P

(X0 = x) > 0 holds for all states x. For each

state, this second condition ensures that the

conditional expectation in (7) is well-defined.

If the initial state distribution meets this

criterion, the definition of values is unaffected.

In an MDP, it will also be useful to define the

action-value function, Q: X A R, that

underpins a policy stat: Assume that the first

action A0 is chosen at random, with P (A0 = a)

> 0 for all an A, and that the actions in later

phases of the decision process are chosen

according to policy. The resulting stochastic

process is ((Xt, At, Rt+1); t 0), where X0 is the

same as in the definition of V. Then X is

optimal for all states at the same time. It's

worth noting that in order for (8) to hold, (|x)

must be focused on the set of actions that

maximise Q(x,). In general, an action that

maximises Q(x,) for some state x is called

greedy with respect to Q in state x, given some

action-value function, Q: X A R. Greedy w.r.t.

Q is a policy that picks greedy actions only

with respect to Q in all states.

As a result, a greedy policy with respect to Q

is optimal, i.e., knowing Q is enough to

establish an optimal policy. Knowing V, r, and

P is also sufficient to act. The next question is

how to find V∗orQ∗. Let us start with the

simple rquestion of how to find the value

function of a policy:

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 61

A Survey on Algorithms for Reinforcement Learning

62 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

Dynamic Programming Algorithms for
Solving MDPs

The above facts provide the basis for the

value- and policy-iteration algorithms. Value

iteration generates a sequence of value

functions.

Vk+1=T ∗Vk, k≥0,

whereV0isarbitrary.ThankstoBanach’sfixed-

pointtheorem,(Vk;k≥0)convergestoV∗ at a

geometricrate.

Valueiterationcanalsobeusedinconjunctionwi

thaction-valuefunctions; inwhichcase, it

takes the form

Qk+1=T ∗Qk, k≥0,

whichagainconvergestoQ∗atageometricrate.T

heideaisthatonceVk(orQk)iscloseto

V∗(resp.,Q∗),apolicythatisgreedywithrespectt

oVk(resps.,Qk)willbeclose-to-optimal.

Inparticular,thefollowingboundisknowntohol

d:Fixanaction-valuefunctionQandlet π be a

greedy policy w.r.t. Q. Then the value of

policy π can be lower bounded as follows

(e.g., Singh and Yee, 1994, Corollary2):

V π (x) ≥ V ∗ (x) − 2 1 − γ kQ − Q ∗ k∞, x ∈

X . (16)

The process of policy iteration is as follows.

Set a starting policy of 0 at random. At

iteration k > 0, calculate the action-value

function underlying k. (This is referred to as

the policy evaluation stage.) Then define k+1

as a greedy strategy with respect to Qk, given

Qk (this is called the policy improvement

step). In terms of the value function derived

using k iterations of value iteration after k

iterations, policy iteration delivers a policy

that is not worse than the greedy policy if the

two methods start with the same initial value

function. A single step in policy iteration, on

the other hand, has a significantly higher

computational cost than a single update in

value iteration (due to the policy review

phase).

VALUE PREDICTION PROBLEMS

We look at the difficulty of estimating the

value function V that underpins several

Markov reward processes in this section

(MRP). Value prediction issues can occur in a

variety of ways: Value prediction problems

include estimating the likelihood of a future

occurrence, the estimated time before an event

occurs, and the (action-)value function

underpinning a policy in an MDP. Predicting

the failure likelihood of a big power system

(Frank et al., 2008) or estimating taxi-out

times of flights at congested airports

(Balakrishna et al., 2008) are only two of the

many uses. Because the value of a state is

defined as the expectation of the random

return when the process is initiated from the

given state, computing an average over

numerous independent realisations starting

from the given state is an apparent approach of

estimating this value. This is an example of

what is known as the Monte-Carlo approach.

Unfortunately, the returns' variance can be

significant, implying that the estimates' quality

will be low. Also, when dealing with others, It

may be impossible to reset the state of a

system in a closed-loop form (that is, when

estimation occurs while interacting with the

system). The Monte-Carlo method cannot be

used in this scenario without introducing

additional bias. Temporal difference (TD)

learning (Sutton, 1984, 1988), without a doubt

one of the most important ideas in

reinforcement learning, is a technique that can

be used to overcome these problems.

Temporal Difference Learning in Finite
State Spaces: The usage of bootstrapping is a

distinctive aspect of TD learning: predictions

are employed as targets during the learning

process. In this section, we'll go over the

basics of the TD algorithm and how

bootstrapping works. Then, we compare TD

learning to (basic) Monte-Carlo approaches,

arguing that each has its own strengths.

Finally, the TD() technique is shown, which

unites the two approaches. In this paper, we

only consider the case of small, finite MRPs,

in which the value-estimates of all states can

be kept in an array or table in the main

memory of a computer, a condition known as

the tabular case in the reinforcement learning

literature. When a tabular representation is

used, extensions of the ideas provided here to

huge state spaces are possible.

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 63

TABULAR TD(0):

Differrence in state values corresponding to

subsequent time steps A temporal difference

error, in particular, is referred to as t+1.

Tabular TD(0), like many other reinforcement

learning methods, is a

Tochastic approximation (SA) algorithm. It's

obvious that if something onverges, it must

converge to a function V such that, given V,

the predicted temporal difference,

is zero for all states x, at least for all states that

are sampled infinitely often. A simple

calculation shows that FV̂=TV̂−V̂, where T is

the Bellman-operatorun derlying the

MRPconsidered.ByFact1,FV̂

= 0 has a unique solution, the value function V

. Thus, if

TD(0) converges (and all states are sampled

infinitely often) then it must converge to V . To

study the algorithm’s convergence properties,

for simplicity

A Survey on Algorithms for Reinforcement Learning

64 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

ON STEP-SIZES

Because many of the algorithms we'll talk

about involve step-sizes, it's worth spending

some time talking about them. t = c/t, with c >

0, is a simple step-size sequence that meets the

aforementioned requirements. In general, any

step-size sequence of the form t = ct will work

for as long as 1/2 1. The smallest step-sizes are

found in the = 1 series of these step-size

sequences. This decision will be the best

asymptotically, but in terms of the algorithm's

transitory behaviour, choosing a value closer

to 1/2 will be better (since with this choice the

step-sizes are bigger and thus the algorithm

will make larger moves). It is feasible to

perform even better. In reality, Polyak

developed a simple method called iterate-

averaging. In fact, people frequently utilise

constant step sizes in practise, which

obviously violates the RM requirements. This

decision is supported by two factors: first, the

algorithms are frequently utilised in non-

stationary environments (i.e., the policy to be

evaluated might change). Second, the

algorithms are frequently used only in the

context of tiny samples. (When a constant

step-size is used, the parameters converge in

distribution, and the variance of the limiting

distribution is proportional to the step-size

chosen.) There is also a lot of work being done

on developing methods for automatically

tuning step-sizes, see (Sutton, 1992;

Schraudolph, 1999; George and Powell, 2006)

and the references therein. The jury is still out

on which strategy is the most effective. The

procedure can also be employed on an

observation series of the type ((Xt, Rt+1,

Yt+1); t 0), where (Xt; t 0) is an arbitrary

ergodic Markov chain over X, (Yt+1, Rt+1)

P0(| Xt), and (Yt+1, Rt+1) P0(| Xt). The shift

is in the way temporal differences are defined:

Then, without any additional circumstances,

Vt still converges almost inexorably to the un

converged value function. The MRP's

underpinnings (X , P0). The distribution of

states (Xt; t 0) in particular has no bearing on

this is intriguing for a variety of reasons. We

may be able to alter the distribution of the

states (Xt; t 0) independently of the MRP if the

samples are created using a simulator. This

could be useful for balancing out any

inequalities in the stationary distribution

underlying the Markov kernel P. Another

application is to learn about a specific policy

goal. in an MDP while adhering to another

policy, sometimes referred to as created by

employing the behaviour policy, where the

action taken does not match the action that the

target policy would have taken in the given

state, while the remainder is kept. This method

could allow you to learn about many policies

at once (more generally, about multiple long-

term prediction problems). Off-policy learning

is when you learn about one policy while

following another. Because of this, we'll refer

to learning based on triplets ((Xt, Rt+1, Yt+1);

t 0) as off-policy learning when Yt+1 = Xt+1.

When the intention is to apply the algorithm to

an episodic problem, there is a third, technical

purpose. The triplets (Xt, Rt+1, Yt+1) are

chosen in this example as follows: First, the

transition kernel P(X) is sampled for Yt+1.

In other words, the process is resumed from

the starting state distribution P0 when it

reaches a terminal state. The time between a

P0 restart and reaching a terminal state is

referred to as an episode (hence the name of

episodic problems). Continuous sampling with

restarts from P0 is the name given to this

method of creating a sample.

Because tabular TD(0) is a standard linear SA

method, its rate of convergence will be of the

order O(1/t) (for further details, see Tadi'c

(2004) and the references therein). The

constant component in the rate, on the other

hand, will be heavily influenced by the step-

size sequence chosen, the features of the

kernel P0, and the value of.

EVERY-VISIT MONTE-CARLO

As previously indicated, computing sample

means can also be used to estimate the value

of a state, giving rise to the so-called every

visit Monte-Carlo approach. Here, we clarify

what we mean more specifically and compare

the resulting method to TD (0).

 Consider an episodic problem to solidify your

views (otherwise, it is impossible to finitely

compute the return of a given state since the

trajectories are infinitely long). Let M = (X,

P0) be the underlying MRP, and ((Xt, Rt+1,

Yt+1); t 0) be the result of continuous

sampling in M with restarts from some

distribution P0 defined over X. Let (Tk; k 0)

be a function.

The sequence in which an episode begins (thus, for each k, XTk is sampled from P0).

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 65

Because multi-step forecasts of the value are

used in Monte-Carlo methods like the one

above (cf. Equation (19), they are referred to

as multi-step methods. Algorithm 2 is the

pseudo-code for this update-rule.

This algorithm is an example of stochastic

approximation once more. As a result, the

ODE v(t) = V v determines its behaviour (t).

Because of the one-of-a-kind globally

asymptotically stable

This ODE's equilibrium is V, and Vt usually

always converges to V. Given that both

algorithms achieve the same aim, one would

wonder which is superior.

TD (0) OR MONTE-CARLO?

Figure 4 shows the undiscounted episodic

MRP. Either 1 or 2 are the initial states. The

process begins in state 1 with a high

likelihood, while it begins in state 2 less

frequently. Consider how TD(0) will act in the

second state. State 3 has been visited 10 k

times on average by the time state 2 is visited

for the kth time. Assume that t = 1/(t + 1) is

the case. The TD(0) update at state 3 is

reduced to averaging the Bernoulli rewards

incurred on leaving state 3. Var Vt(3) 1/(10 k)

for the kth visit of state 2 (obviously, E Vt(3)

= V (3) = 0.5). As a result, the goal of the state

2 update will be an accurate estimate of the

true value of state 2. Take a look at the Monte-

Carlo approach. The Monte-Carlo technique

disregards the estimated value of state 3 and

relies solely on the Bernoulli rewards. Var

[Rt|Xt = 2] = 0.25, indicating that the target's

variance does not change over time. This

causes the Monte-Carlo approach take longer

to converge in this case, demonstrating that

bootstrapping can be beneficial in some cases.

Imagine that the challenge is changed so that

the reward connected with the transition from

state 3 to state 4 is made deterministically.

transitioning from condition 3 to state 4, when

a Bernoulli random variable with parameter

0.5 is used, the payoff is zero. The fourth state

is the final one. The process is reset to state 1

or 2 when it reaches the terminal state. Starting

in state 1 has a probability of 0.9, while

starting at state 2 has a probability of 0.1. the

same as one Since Rt = 1 is the true target

value, the Monte-Carlo method becomes faster

in this situation, whereas for the value of state

2 to approach its true value, TD(0) must wait

until the estimate of the value at state 3

approaches its true value. The convergence of

TD is slowed as a result of this (0). In fact, for

A Survey on Algorithms for Reinforcement Learning

66 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

I 1,..., N, one might envisage a longer chain of

states, where state I + 1 follows state I and the

only time a nonzero reward is incurred is when

transitioning from state N 1 to state N. The

pace of convergence of the Monte-Carlo

approach is unaffected by the value of N in

this example, whereas TD(0) would slow

down as N increased.

TD(Λ): UNIFYING MONTE-CARLO AND
TD(0)

Both Monte-Carlo and TD(0) have merits, as

seen in the previous cases. Surprisingly, there

is a method to bring these perspectives

together. The so-called TD() family of

techniques does this (Sutton, 1984, 1988). [0,

1] is a parameter that enables for interpolation

between Monte-Carlo and TD(0) updates in

this case: TD(0) is obtained by setting = 0

(thus the term TD(0)), but TD(1) is obtained

by setting = 1, i.e., TD(1) is identical to a

Monte-Carlo approach. In essence, given some

> 0, the TD() update's targets are delivered as

a blend of

where the exponential weights (1)k, k 0 are

the mixing coefficients As a result, TD() will

be a multi-step technique for > 0. The

inclusion of so-called eligibility traces makes

the algorithm incremental.

In fact, the eligibility traces can be defined in a

variety of ways, and as a result, TD() exists in

a variety of different versions. The following

is the TD() update rule for the so-called

accumulating traces:

The replacing traces update is what it's called.

The trace-decay option regulates the amount of

bootstrapping in these updates: When lim0+(1

) k0 kRt:k = Rt:0 = Rt+1 + Vt(Xt+1), the

above methods become equivalent to TD(0)

(because lim0+(1) k0 kRt:k = Rt:0 = Rt+1 +

Vt(Xt+1)). When = 1, we get the TD(1)

algorithm, which simulates the previously

reported every-visit Monte-Carlo technique in

episodic problems using accumulating traces.

(For an exact equivalent, assume that value

updates occur only at the ends of trajectories,

and that the updates are simply summed up to

that point.) Because the discounted sum of

temporal differences along a trajectory from a

start to a terminal state telescopes and delivers

the difference between the return along the

trajectory and the value estimate at the start,

the assertion follows. Replacing traces and = 1

refer to a Monte-Carlo algorithm in which a

state is only updated when it is encountered

for the first time in a trajectory. The first-visit

Monte-Carlo method is the related algorithm.

The formal relationship between the first-visit

Monte-Carlo approach and TD(1) with

replacing traces is known to be valid only for

the undiscounted situation (Singh and Sutton,

2003).

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 67

1 k i1 i2 ik

i i i

1996). The pseudocode for the variation with

replacement traces is given by Algorithm 3.

The best value of is discovered by trial and

error in practise. In fact, even during the

algorithm, the value of can be altered without

affecting convergence. This is true for a

variety of additional potential eligibility trace

modifications (for precise conditions, see

Bertsekas and Tsitsiklis, 1996, Section 5.3.3

and 5.3.6). In reality, the replacement traces

variant of the method is thought to perform

better (for some examples when this happens,

consult Sutton and Barto, 1998, Section 7.8). It

has been noticed that > 0 is useful when the

learner only has a partial understanding of the

state, or (in a related case) when function

approximation is used to approximate the

value functions in a mathematical model.

ALGORITHMS FOR LARGE STATE SPACES

When the state space is large (orinfinite), it

is not feasible to keep a separate value for

each state in the memory. In such cases, we

often seek an estimate of the values in the

form

Vθ(x) =θTϕ(x), x ∈X,

where θ ∈Rd is a vector of parameters and ϕ :

X → Rd is a mapping of states to d-

dimensional vectors. For state x, the

components ϕi(x) of the vector ϕ(x) are called

the features of state x and ϕ is called a

feature extraction method. The individual

functions

ϕi: X → R defining the components of ϕ are

called basis functions.

The features (or basic functions) can be

created in a variety of ways once you have

access to the state. If x R (i.e., X R), a

polynomial, Fourier, or wavelet basis can be

used up to a certain order. For example,

provided a suitable measure (such as the

stationary distribution) over the states is

available, (x) = (1, x, x2,..., xd1)T can be used

in the case of a polynomial basis or an

orthogonal system of polynomials. This

second option may aid in the faster

convergence of the incremental algorithms we

will explore shortly. In the case of

multidimensional statespaces, the tensor

productcon struction is a commonly used way

to construct features given features of the

states’

individual components. The tenso

rproductcon struction works as follows:

Imagine thatX⊂X1×X2×...×Xk.Let

ϕ(i):Xi→Rdibea feature extractor defined for

theith state component. Thetensor product

ϕ=ϕ(1)⊗...⊗ϕ(k)feature extractor will have

d=d1d2...dk components, which can be

conveniently indexed using multi-indices of

the form (i1,...,ik),1≤ij≤dj,j= 1, . . . , k. Then

ϕ(i,...,i)(x) = ϕ(1)(x1)ϕ(2)(x2) . . . ϕ(k)(xk). When

X ⊂Rk, one particularly

popular choice is to use radial basis function

(RBF) networks, when ϕ(i)(xi) = (G(|xi−

x(1)|),...,G(|xi−x(di)
|))T.

Herex(j)∈R(j=1,...,di) is fixed by the user

andG is a suitable function. A typical choice

A Survey on Algorithms for Reinforcement Learning

68 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

for G is G(z) = exp(−η z2) where η >0 is a

scale

parameter. The tensor product construct in this

cases places Gaussians at points of a regular

grid and the ithbasis function becomes

Then V(x) = i:i(x)=1 I I I I I I I I I I I I I I I I If

(x) is s-sparse (i.e., only s elements of (x) are

non-zero), the value of state x can be

determined at the cost of s additions, given

that the index of the non-zero components of

the feature vector can be obtained directly.

This is the situation when the features are

defined using state aggregation. In this

instance,

(The individual features') coordinate functions

correspond to markers of non-overlapping

sections of the state space X whose union

encompasses X. (i.e., the regions form a

partition of the state space). T(x) will

obviously be constant over the individual areas

in this situation, therefore state aggregation

effectively "discretizes" the state space. A

function that aggregates states.

Tile coding (formerly known as CMAC,

Albus, and others) is another option that leads

to binary features.

1971 and 1981. The basis functions of

correspond to indicator functions of numerous

shifting partitions (tilings) of the state space in

the simplest version of tile coding: if s tilings

are utilised, will be s-sparse. The offsets of the

tilings corresponding to different dimensions

should be different to make tile coding an

efficient function approximation approach.

THE CURSE OF DIMENSIONALITY

The issue with tensor product constructions,

stateaggre- gation and straight forward tile

coding is that when the state space is high

dimensional they quickly become intractable:

For example, a tiling of [0, 1]D with cubical

regions with side- lengths of ε gives rise to d =

ε−D-dimensional feature- and parameter-

vectors. If ε = 1/2 and D = 100, we get the

enormous number d ≈ 1030. This is

problematic since state- representations with

hundreds of dimensions are common in

applications. At this stage,

onemaywonderifitispossibleatalltosuccessfully

dealwithapplicationswhenthestate lives in a

high dimensional space. What often comes at

rescue is that the actual problem. The

complexity of the state variable could be

substantially lower than what is predicted by

counting the number of dimensions (although,

there is no guarantee that this happens). To see

why this is occasionally true, consider that the

same problem can have numerous

representations, some of which have low-

dimensional state variables and others with

high-dimensional state variables. Because the

user often chooses the state-representation in a

conservative manner, it's possible that many of

the state variables are useless in the chosen

representation. It's also possible that the actual

states encountered are on (or near) a low-

dimensional submanifold of the specified

high-dimensional "state-space."

Consider an industrial robot arm with three

joints and six joints. The number of states

represented will easily be in the millions, yet

the inherent dimensionality will remain at 12.

In fact, the higher the dimensionality, the more

cameras we have. A straightforward strategy

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 69

n

j=1

KD(x,xj)

aimed at reducing dimensionality would

recommend using as few cameras as possible.

More information, on the other hand, isn't

going to hurt! As a result, smart algorithms

and function approximation methods that can

deal with high-dimensional but low-

complexity situations should be sought.

Strip-like tilings combined with hash

functions, interpolators employing low-

discrepancy grids (Lemieux, 2009, Chapters 5

and 6), and random projections are all

possibilities (Das- gupta and Freund, 2008).

Methods for approximating nonlinear

functions (for example, neural networks with

sigmoidal transfer functions in the hidden

layers or RBF nets).

which should be compared to its parametric

counterpart (20). Other examples include

methods that work by finding an appropriate

function in some large (infinite dimensional)

function space that fits an empirical error. The

function space is usually a Reproducing

Kernel Hilbert space which is a convenient

choice from the point of view of optimization

It needs to be contrasted with its parametric

counterpart (20). Methods that work by

finding a suitable function in a huge (infinite

dimensional) function space that fits an

empirical inaccuracy are another example. The

function space is typically a Reproducing

Kernel Hilbert space, which is a good choice

from an optimization standpoint. Spline

smoothers (Wahba, 2003) and Gaussian

process regression are examples of special

situations (Rasmussen and Williams, 2005).

Another option is to divide the input space

recursively into finer sections using a heuristic

criterion and then forecast the values in the

leafs using a simple approach.

Eventually, tree-based approaches emerge.

The line separating parametric and

nonparametric approaches is a hazy one. When

the number of basis functions is permitted to

change (i.e., new basis functions are

introduced as needed), a linear predictor

becomes a nonparametric technique. Thus,

when experimenting with alternative feature

extraction approaches, we may argue that we

are using a nonparametric strategy from the

perspective of the total tuning process. In fact,

if we take this perspective, it follows that

"real" parametric approaches are rarely, if

ever, utilised in practise.

The inherent flexibility of nonparametric

approaches is a benefit. This, however, usually

comes at the cost of greater computing

complexity. As a result, efficient

implementations are critical when employing

non-parametric approaches (e.g., one should

use k-D trees when implementing nearest

neighbour methods, or the Fast Gaussian

Transform when imple- menting a Gaussian

smoother). Nonparametric approaches must

also be fine-tuned.

They have the potential to overfit or underfit.

If k is too large in a k-nearest neighbour

approach, for example,

If k is too large, the approach will smooth out

too much (i.e., it will underfit), whereas if k is

too little, it will fit to the noise (i.e., overfit).

Section 3.2.4 will go over overfitting in more

detail. The reader is urged to consult for more

information on nonparametric regression.

Although we will explore parametric function

approximation (and in many cases linear

function approximation) in the next sections,

many of the strategies can be extended to

nonparametric methods. When such extensions

are available, we will make a note of it. Until

now, the debate has implicitly assumed that

the state is measurable. In real-world

applications, however, this is rarely the case.

Fortunately, the methods we'll explore below

don't require direct access to the states; they'll

work just as well if any "sufficiently

descriptive feature-based representation" of

the states is provided (such as the camera

images in the robot-arm example).

Constructing state estimators (or observers, in

control language) based on the data is a

popular technique to arrive at such a

representation.

TD(Λ) WITH FUNCTION APPROXIMATION

Letusreturntotheproblemofestimatingavaluef

unctionVofaMarkovrewardprocess M = (X ,

P0), but now assume that the state space is

large (or even infinite). Let D = ((Xt, Rt+1); t

≥ 0) be a realization of M. The goal, as

before, is to estimate the value function of M

given D in an incremental manner.

Choose a smooth parametric function-

approximation method (Vθ; θ ∈Rd) (i.e., for

A Survey on Algorithms for Reinforcement Learning

70 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

any

θ∈Rd,Vθ:X→Ris such that∇θVθ(x) exists for

anyx∈X). The generalization of

Herezt

∈Rd.Algorithm4showsthepseudocodeofthisalg

orithm.

To see that this algorithm is indeed a

generalization of tabular TD(λ) assume that X

=

{x1,...,xD}andletVθ(x)=θTϕ(x)withϕi(x)=I{x=x

i}. Note that since Vθ is linear in the

parameters (i.e.,Vθ=θTϕ), it holds that

∇θVθ=ϕ. Hence, identifying zt,i(θt,i)withzt(xi)

(resp.,Vˆt(xi)) we see that the update(21),

indeed, reduces to the previous one.

In the off-policy version of TD(λ), the

definition of δt+1 becomes

δt+1 = Rt+1 + γVθt (Yt+1) −

Vθt (Xt)

Off-policy sampling, unlike tabular

sampling, does not guarantee

convergence; in fact, the parameters may

diverge (see, for example, Bertsekas and

Tsitsiklis, 1996, Example 6.7, p. 307).

When the distributions of (Xt; t 0) do not

match the stationary distribution of the

MRP M, this is true for linear function

approximation. When the approach is

combined with a nonlinear function-

approximation method, the algorithm may

diverge (see, e.g., Bertsekas and Tsitsiklis,

1996, Example 6.6, p. 292). See Baird

(1995); Boyan and Moore for more

examples of instability (1995).

On the plus side, when I a linear function-

based algorithm is used, practically certain

convergence can be guaranteed.

The approximation method is used to the

following: X Rd; (ii) the stochastic

process (Xt; t 0) is utilised.

ACTIVE LEARNING INBANDITS

Consider active learning, which is still

possible if the MDP is in a single state. Given

(say) T interactions, the goal should be to

select an action with the biggest immediate

payoff. Because the benefits obtained during

interaction are irrelevant, the only reason not

to try an action is if it can be proven to be

worse than another action with enough

certainty. The remaining measures should be

attempted in the hopes of demonstrating that

some are ineffective. Calculating upper and

lower confidence boundaries for each action is

a straightforward approach to accomplish this:

If Ut(a) maxaJA Lt, then an action is

eliminated (aJ). Here, 0 1 is a user-defined

parameter that determines the goal

confidence level at which the algorithm is

allowed to fail to produce the greatest

predicted reward action. This algorithm is

unimprovable except for constant factors

and using estimated variances in the

confidence bounds (Even- Dar et al.,

2002; Tsitsiklis and Mannor, 2004; Mnih

et al., 2008).

Online learning in Markov Decision
Processes

Let us now return to MDPs' online learning.

One such goal is to reduce regret, which is

defined as the difference between the total

reward achieved by the best policy and the

total reward received by the learner. This issue

is discussed in the first portion of this section.

Another goal could be to reduce the number of

time steps when the algorithm's future

projected return is less than the ideal expected

return by a certain amount. In the second part

of this section, we'll look at this issue.

DIRECT METHODS

In this part, we look at techniques that attempt

to directly approximate the optimal action-

value function Q. The algorithms under

consideration are sample-based, approximate

variants of value iteration that produce a

succession of action-value functions (Qk; k 0).

The assumption is that if Qk is close to Q, a

greedy policy with respect to Qk will be close

to optimal, as demonstrated by the bound (16).

The first algorithm we'll look at is Watkins' Q-

learning (1989). We begin by discussing this

approach for (small) finite MDPs, then move

on to its numerous extensions, which work

even in enormous MDPs.

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 71

Q-learning in Finite MDPs

where T∗is the Bellman optimality operator

defined by (15). Hence, under the minimal

assumptionthateverystate-

actionpairisvisitedinfinitelyoften,instochastice

quilibrium, one must have T∗Q = Q. Using

Fact 3,we see that if the algorithm converges, it

must converge to Q∗under the stated condition.

The sequence (Qt; t ≥ 0) is indeed known to

converge to Q∗when appropriate local learning

rates are used (Tsitsiklis,1994;Jaakkola

etal.,1994).15TherateofconvergenceofQ-

learningwasstudiedbySzepesv´ari(1997)in

an a symptotics ettingandlater by Even-Darand

Mansour(2003) in a finite-sample setting.

WHAT POLICY TO FOLLOW DURING
LEARNING?

One of the most appealing features of Q-

learning is its simplicity, which allows for the

use of any sampling technique to create

training data as long as all state-action pairs

are updated infinitely often in the limit. In a

closed-loop situation, the Boltzmann scheme

(in which the probability of selecting action an

at time t is chosen to be proportional to

eQt(Xt,a)) or the -greedy action selection

scheme (in which the probability of selecting

action an at time t is chosen to be proportional

to eQt(Xt,a)) are the most commonly used

strategies. With the right adjustment, the

behaviour policy can reach asymptotic

consistency (see Szepesv'ari, 1998, Section

5.2, and Singh et al., 2000). However, as

described in Section 4.2, more systematic

exploration may be required in closed-loop

learning to obtain acceptable online

performance.

Actor-critic methods: Actor-critic

approaches are used to iterate policies in a

broad way. It's important to remember that

policy iteration works by alternating between a

full policy evaluation and a full policy

improvement step. Exact evaluation of policies

using sample-based approaches or function

approximation may necessitate an endless

number of samples or be impossible due to the

limitations of the function-approximation

technique. As a result, policy iteration

reinforcement learning algorithms must update

the policy based on partial information of the

value function.

Generalized policy iteration refers to

algorithms that update the policy before it is

fully evaluated (GPI). An actor and a critic are

two closely interacting processes in GPI: the

actor strives to improve current policy, while

the critic reviews current policy, thereby

assisting the actor.

A Survey on Algorithms for Reinforcement Learning

72 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

IMPLEMENTING ACRITIC

The critic's task is to assess the value of the

actor's current target policy. This is a problem

in which you must anticipate the value of

something. As a result, the critic can employ

the techniques indicated in Section 3. Because

the actor requires action values, the methods

are usually changed to directly estimate action

values. The algorithm known as SARSA() is

obtained by correctly extending TD(). This is

the first algorithm we'll talk about. When

LSTD() is extended, we get LSTD-Q(), which

is the subject of the next section. -LSPE could

be extended as well, but for the purpose of

brevity, we won't go over that here.

SARSA Similarly to Q-learning, SARSA

keeps track of the action-value underlying

finite (and small) state and action spaces.

For further exploration:

Inevitably, due to space constraints, this

review must missalargeportion of the

reinforcement Learning literature.

Further reading: Effective sampling-based

planning (Kearns et al., 1999; Szepesv'ari,

2001; Kocsis and Szepesv'ari, 2006; Chang et

al., 2008) is one issue that has received little

attention. The main takeaway is that, in the

worst-case scenario, off-line planning can

scale exponentially with the dimensionality of

the state space (Chow and Tsitsiklis, 1989),

whereas online planning (i.e., planning for the

"current state") can avoid the dimensionality

curse by spreading the planning effort over

multiple time steps (Rust, 1996; Szepesv'ari,

2001).

Other topics of interest include linear

programming-based approaches (de Farias and

Van Roy, 2003, 2004, 2006), dual dynamic

programming (Wang et al., 2008), sample

average approximation techniques (Shapiro,

2003), such as PEGASUS (Ng and Jordan,

2000), and online learning in MDPs with

arbitrary reward (de Farias and Van Roy,

2003, 2004, 2006). Effective sampling-based

planning (Kearns et al., 1999; Szepesv'ari,

2001; Kocsis and Szepesv'ari, 2006; Chang et

al., 2008) is one issue that has received little

attention. The main takeaway is that, in the

worst-case scenario, off-line planning can

scale exponentially with the dimensionality of

the state space (Chow and Tsitsiklis, 1989),

whereas online planning (i.e., planning for the

"current state") can avoid the dimensionality

curse by spreading the planning effort over

multiple time steps (Rust, 1996; Szepesv'ari,

2001).

Other topics of interest include linear

programming-based approaches (de Farias and

Van Roy, 2003, 2004, 2006), dual dynamic

programming (Wang et al., 2008), sample

average approximation techniques (Shapiro,

2003), such as PEGASUS (Ng and Jordan,

2000), and online learning in MDPs with

arbitrary reward (de Farias and Van Roy,

2003, 2004, 2006).

Applications Learning in games (e.g.,

Backgammon (Tesauro, 1994) and Go (Silver

et al., 2007), applications in networking (e.g.,

packet routing (Boyan and Littman, 1994),

channel allocation (Singh and Bertsekas,

1997)), applications to operations research

problems (e.g., targeted marketing (Abe et al.,

2004), job-shop scheduling (Zhang and Dietz,

2004),

A Survey on Algorithms for Reinforcement Learning

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 73

REFERENCES
A. Prieditis, S. J. R., editor (1995). Proceedings of

the 12th International Conference on

Machine Learning (ICML 1995), San

Francisco, CA, USA. Morgan Kaufmann.

Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y.

(2007). An application of reinforcement

learningtoaerobatichelicopterflight.InSchölkopfet

al.(2007),pages1–8.

Abe,N.,Verma,N.K.,Apt´e,C.,andSchroko,R.(2004)

. Crosschanneloptimizedmarketing by

reinforcement learning. In Kim, W., Kohavi,

R., Gehrke, J., and DuMouchel, W.,

Albus, J. S. (1971). A theory of cerebellar function.

Mathematical Biosciences, 10:25–61. Albus,

J. S. (1981). Brains, Behavior, and Robotics.

BYTE Books, Subsidiary of McGraw-

Hill, Peterborough, New Hampshire.

Amari, S. (1998). Natural gradient works

efficiently in learning. Neural Computation,

10(2):251–276.

Antos, A., Munos, R.,and Szepesv´ari,C.(2007).

Fitted Q-iterationin continuousaction- space

MDPs. In Plattetal. (2008), pages9–16.

Antos,A.,Szepesv´ari,

C.,andMunos,R.(2008).Learningnear-

optimalpolicieswith Bellman-residual

minimization based fitted policy iteration and

a single sample path. Machine Learning,

71(1):89–129. Published Online First: 14

Nov, 2007.

Audibert,J.-

Y.,Munos,R.,andSzepesv´ari,C.(2009).Explor

ation-exploitationtrade- off using variance

estimates in multi-armed bandits. Theoretical

Computer Science, 410(19):1876–1902.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002).

Finite time analysis of the multiarmed bandit

problem. Machine Learning, 47(2-3):235–

256.

Auer,P.,Jaksch,T.,andOrtner,R.(2010).Near-

optimalregretboundsforreinforcement

learning. Journal of Machine Learning

Research, 11:1563—1600.

Bagnell,J.A.andSchneider,J.G.(2003).Covariantpoli

cysearch.InGottlob,G.andWalsh, T., editors,

Proceedings of the Eighteenth International

Joint Conference on Artificial Intelligence

(IJCAI-03),pages1019–1024,SanFrancisco,

CA, USA. MorganKaufmann.

Baird,L.C.(1995).Residualalgorithms:Reinforceme

ntlearningwithfunctionapproxima- tion. In A.

Prieditis (1995), pages30–37.

Balakrishna, P., Ganesan, R., Sherry, L., and Levy,

B. (2008). Estimating taxi-out times with a

reinforcement learning algorithm. In 27th

IEEE/AIAA Digital AvionicsSystems

Conference, pages 3.D.3–1 –3.D.3–12.

Bartlett, P. L. and Tewari, A. (2009). REGAL: A

regularization based algorithm for rein-

forcement learning in weakly communicating

MDPs. In Proceedings of the 25th Annual

Conference on Uncertainty in Artificial

Intelligence.

Barto,A.G.,Sutton,R.S.,andAnderson,C.W.(1983).

Neuronlikeadaptiveelementsthat can solve

difficult learning control problems. IEEE

Transactions on Systems, Man,and

Cybernetics,13:834–846.

Beleznay,

F.,Gr˝obler,T.,andSzepesv´ari,C.(1999).Comp

aringvalue-functionestima- tion algorithms in

undiscounted problems. Technical Report

TR-99-02, Mindmaker Ltd.,

Budapest1121,KonkolyTh.M.u.29-

33,Hungary.

Berman,P.(1998).On-

linesearchingandnavigation.InFiat,A.andWoe

ginger,G.,editors,Online Algorithms: The

State of the Art, chapter 10. Springer, Berlin,

Heidelberg.

Bertsekas, D. P. (2007a). Dynamic Programming

and Optimal Control, volume 1. Athena

Scientific, Belmont, MA, 3edition.

Bertsekas, D. P. (2007b). Dynamic Programming

and Optimal Control, volume 2. Athena Scientific,

Belmont, MA, 3edition.

Bertsekas,D.P.,Borkar,V.S.,andNediˇc,A.(2004).Im

provedtemporaldifferencemethods

withlinearfunctionapproximation.InSi,J.,Barto

,A.G.,Powell,W.B.,andWunschII,

D.,editors,LearningandApproximateDynamic

Programming,chapter9,pages235–257.

IEEEPress.

Bertsekas,D.P.andIoffe,S.(1996).Temporaldifferenc

es-basedpolicyiterationandappli- cations in

neuro-dynamic programming. LIDS-P-2349,

MIT.

Citation: Motumarri Jahnavi et al, “A Survey on Algorithms for Reinforcement Learning”, International

Journal of Research Studies in Science, Engineering and Technology. 2019; 6(11): 55-73. DOI:

https://doi.org/10.22259/2349-476X.0611006

Copyright: © 2019 Authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

https://doi.org/

