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INTRODUCTION 

Fractional calculus theory is a mathematical 

analysis tool to the study of integrals and 
derivatives of arbitrary order, which unify and 

generalize the notations of integer-order 

differentiation and n fold integration (El-

Ajou, Arqub, Al-Zhour, & Momani, 2013; 
Millar & Ross, 1993; Oldham & Spanier, 1974; 

Podlubny, 1999). 

The L'Hopital’s letter raised the question "What 

does 
mx

xmf



 )(
mean if

2

1
m ?" to Leibniz in 

1695 is considered to be where the idea of 
fractional calculusstarted(Diethelm, 2010; 

Hilfer, 2000; Lazarevic, et al., 2014; Millar & 

Ross, 1993; Kumar & Saxena, 2016). Since 
then, much works on this question and other 

related questions have done up to the middle of 

the 19th century by many famous 
mathematicians such as Laplace, Fourier, Abel, 

Liouville, Riemann, Grunwald, Letnkov, Levy, 

Marchaud, Erdelyi andReiszand these works 

sum up leads to contribution screating the field 
which is known today as fractional 

calculus(Oldham & Spanier, 1974).  

Even though fractional calculus is nearly as old 
as the standard calculus, it was only in recent 

few decades that its theory and applications 

have rapidly developed. It was Ross who 
organized the first international conference on 

fractional calculus and its applications at the 

University of new Haven in June 1974, and 
edited the proceedings(Ross, 1975). Oldham and 

Spanier (1974) published the first monograph on 

fractional calculus in 1974. Next, because of the 

fact that fractional derivatives and integrals are 
non-local operators and then this property make 

them a powerful instrument for the description 

of memory and hereditary properties of different 
substances(Podlubny, 1999),theory and 

applications of fractional calculus have attracted 

much interest and become a pulsating research 
area. 

Due to this, fractional calculus has got important 

applications in different fieldsof science, 

engineering and finance. For instance, Shanantu 
Das(2011) discussed that fractional calculusis 

applicable to problems in:fractance circuits, 

electrochemistry, capacitor theory, feedback 
control system, vibration damping system, 

diffusion process, electrical science, and 
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material creep. Podlubny(1999)discussed that 
fractional calculus isapplicable to problems in 

fitting experimental data, electric circuits, 

electro-analytical chemistry, fractional multi-
poles, neurons and biology(Podlubny, 

1999).Fractional calculus is also applicable to 

problems in: polymer science, polymer physics, 

biophysics, rheology, and 
thermodynamics(Hilfer, 2000).In addition, it is 

applicable to problems in: electrochemical 

process(Millar & Ross, 1993; Oldham & 
Spanier, 1974; Podlubny, 1999) , control 

theory(David, Linarese, & Pallone, 2011; 

Podlubny, 1999), physics(Sabatier, Agrawal, & 
Machado, 2007), science and 

engineering(Kumar & Saxena, 2016), transport 

in semi-infinite medium(Oldham & Spanier, 

1974), signal processing(Sheng, Chen, & Qiu, 
2011), food science (Rahimy, 2010), food gums 

(David & Katayama, 2013), fractional 

dynamics(Tarsov, 2011; zaslavsky, 2005), 
modeling Cardiac tissue electrode 

interface(Magin, 2008), food engineering and 

econophysics  (David, Linarese, & Pallone, 

2011), complex dynamics in biological 
tissues(Margin, 2010), viscoelasticity(Dalir & 

Bashour, 2010; Mainardi, 2010; Podlubny, 

1999; Rahimy, 2010; Sabatier, Agrawal, & 
Machado, 2007), modeling oscillation 

systems(Gomez-Aguilar, Yepez-Martinez, 

Calderon-Ramon, Cruz-Orduna, Escobar-
Jimenez, & Olivares-Peregrino, 2015). Some of 

these mentioned applications were tried to be 

touchedas follows. 

In the area of science and engineering, different 
applications of fractional calculus have been 

developed in the last two decades. For instance, 

fractional calculus was used in image 
processing, mortgage, biosciences, robotics, 

motion of fractional oscillator and analytical 

science(Kumar & Saxena, 2016). It was also 
used to generalize traditional classical inventory 

model to fractional inventory model (Das & 

Roy, 2014). 

In the area of electrochemical process, for 
example half-order derivatives and integrals 

proved to be more useful for the formulation of 

certain electrochemical problems than the 
classical models(Millar & Ross, 1993; Oldham 

& Spanier, 1974; Podlubny, 1999). 

In the area of viscoelasticity, the use of 

fractional calculusfor modeling viscoelastic 
materials is well known. For viscoelastic 

materials the stress-strain constitutive relation 

can be more accurately described by introducing 

the fractional derivative(Carpinteri, Cornetti, & 
sapora, 2014; Dalir & Bashour, 2010; Duan, 

2016; Koeller, 1984; Mainardi, 2010; Podlubny, 

1999). 

Fractional derivatives, which are the one part of 

fractional calculus, are used to name derivatives 

of an arbitrary order(Podlubny, 1999). Recently, 

fractional derivatives have been successfully 
applied to describe (model) real world problems. 

In the area of physics, fractional kinetic 

equations of the diffusion, diffusion-advection 
and Focker-Plank type are presented as a useful 

approach for the description of transport 

dynamics in complex systems that are governed 
by anomalous diffusion and non-exponential 

relaxation patterns (Metzler & Klafter, 2000). 

Metzler and Klafter (2000) derived these 

fractional equations asymptotically from basic 
random walk models, and from a generalized 

master equation. They presented an integral 

transformation between the Brownian solution 
and its fractional counterparts. Moreover, a 

phase space model was presented to explain the 

genesis of fractional dynamics in trapping 

systems. These issues make the fractional 
equation approach powerful. Their work 

demonstrates that the fractional equations have 

come of age as a complementary tool in the 
description of anomalous transport 

processes.L.R. Da Silva, Tateishi, M.K. Lenzi, 

Lenzi and Da silva(2009)were also discussed  
that solutions for a system governed by a non-

Markovian Fokker Planck equation and 

subjected to a Comb structure were investigated 

by using the Green function approach. This 
structure consists of the axis of structure as the 

backbone and fingers which are attached 

perpendicular to the axis, and for this system, an 
arbitrary initial condition in the presence of time 

dependent diffusion coefficients and spatial 

fractional derivatives was considered and the 
connection to the anomalous diffusion was 

analyzed (L.R. Da Silva et al., 2009). 

In addition to these, the following are also other 

applications of fractional derivatives. Fractional 
derivatives in the sense of Caputo fractional 

derivatives were used in generalizing some 

theorems of classical power series to fractional 
power series (El-Ajou et al., 2013). Fractional 

derivative in the Caputo sense was used to 

introduce a general form of the generalized 

Taylor’s formula by generalizing some theorems 
related to the classical power series into 

fractional power series sense (El-Ajou, Abu 

Arqub, & Al-S, 2015). A definition of Caputo 
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fractional derivative proposed on a finite 
interval in the fractional Sobolev spaces was 

investigated from the operator theoretic 

viewpoint(Gorenflo, Luchko, & Yamamoto, 
2015). Particularly, some important equivalence 

of the norms related to the fractional integration 

and differentiation operators in the fractional 

Sobolev spaces are given and then applied for 
proving the maximal regularity of the solutions 

to some initial-boundary-value problems for the 

time-fractional diffusion equation with the 
Caputo derivative in the fractional Sobolev 

spaces(Gorenflo, Luchko, & Yamamoto, 

2015).With the help of Caputo time-fractional 
derivative and  Riesz space-fractional 

derivative, the  -fractional diffusion equation, 

which is a special model for the two-

dimensional anomalous diffusion, is deduced 
from the basic continuous time random walk 

equations in terms of a time- and space- 

fractional partial differential equation with the 

Caputo time-fractional derivative of order 
2



and the Riesz space-fractional derivative of 

order (Luchko, 2016). Fractional derivatives 

were also used to describe HIV infection of 

TCD 4 with therapy effect (Zeid, Yousefi, & 

Kamyad, 2016). 

In the area of modeling oscillating systems, 

caputo and Caputo-Fabrizio fractional 
derivatives were used to present fractional 

differential equations which are generalization 

of the classical mass-spring-damper model, and 
these fractional differential equations are used to 

describe variety of systems which had not been 

addressed by the classical mass-spring-damper 

model due to the limitations of the classical 
calculus (Gomez-Aguilaret al., 2015).  

Podlubny(1999)stated that fractional differential 

equations are equations which contain fractional 
derivatives. These equations can be divided into 

two categories such as fractional ordinary 

differential equations and fractional partial 
differential equations. Fractional partial 

differential equations (PDES) are a type of 

differential equations (DEs) that involving 

multivariable function and their fractional or 
fractional-integer partial derivatives with respect 

to those variables(Abu Arqub, El-Ajou, & 

Momani, 2015).There are different examples of 
fractional partial differential equations. Some of 

them are: the time-fractional Boussinesq-type 

equation, the time-fractional )1 ,1 ,2(B -type 

equation and the time-fractional Klein-Gordon-

type equation stated in Abu Arqub et al.(2015), 
and time fractional diffusion equation stated 

inA.Kumar, kumar and Yan (2017),  Cetinkaya 

and Kiymaz (2013), Kumar, Yildirim, Khan and 
Wei(2012) and so on. 

Recently, fractional differential equations have 

been successfully applied to describe (model) 

real world problems. For instance, the 
generalized wave equation, which contains 

fractional derivatives with respect to time in 

addition to the second-order temporal and 
spatial derivatives, was used to model the 

viscoelastic case and the pure elastic case in a 

single equation(Wang, 2016).The time fractional 
Boussinesq-type equations can be used 

todescribe small oscillations of nonlinear beams, 

long waves over an even slope, shallow-water 

waves, shallow fluid layers, and nonlinear 

atomic chains; the time-fractional )1 ,1 ,2(B -

type equations can be used to study optical 

solitons in the two cycle regime, density waves 

in traffic flow of two kinds of vehicles, and 
surface acoustic soliton in a system supporting 

love waves; the time fractional Klein-Gordon-

type equations can be applied to study complex 
group velocity and energy transport in absorbing 

media, short waves in nonlinear dispersive 

models, propagation of dislocations within 
crystals(As cited in Abu Arqub et al., 2015).As 

cited in Abu Arqub(2017), the time-fractional 

heat equation, which is derived from Fourier’s 

law and conservation of energy, is used in 
describing the distribution of heat or variation in 

temperature in a given region over time; the 

time-fractional cable equation, which is derived 
from the cable equation for electro diffusion in 

smooth homogeneous cylinders and occurred 

due to anomalous diffusion, is used in modeling 

the ion electro diffusion at the neurons; the time-
fractional modified anomalous sub diffusion 

equation, which is derived from the neural cell 

adhesion molecules, is usedfor describing 
processes that become less anomalous as time 

progresses by the inclusion of a second 

fractional timederivative acting on the diffusion 
term; the time fractional reaction sub diffusion 

equation is used to describe many different areas 

of chemical reactions, such as exciton 

quenching, recombination of charge carriers or 
radiation defects in solids, and predator pray 

relationships in ecology; the time-fractional 

Fokker–Planck equation is used to describe 
many phenomena in plasma and polymer 

physics, population dynamics, neurosciences, 

nonlinear hydrodynamics, pattern formation, 
and psychology; the time-fractional Fisher’s 
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equation  is used to describe the population 
growth models, whilst, the time fractional 

Newell–Whitehead equation is used to describe 

fluid dynamics model and capillary–gravity 
waves. The fractional differential equations, 

generalization of the classical mass-spring-

damper models, are useful to understand the 

behavior of dynamical complex systems, 
mechanical vibrations, control theory, relaxation 

phenomena, viscoelasticity, viscoelastic 

damping and oscillatory processes (Gomez-
Aguilaret al., 2015).The space-time fractional 

diffusion equations on two time intervals was 

used in finance to model option pricing and the 
model was shown to be useful for option pricing 

during some temporally abnormal periods 

(Korbel & Luchko, 2016). The  -fractional 

diffusion equation for 20   describes the 

so called Levy flights that correspond to the 

continuous time random walk model, where 
both the mean waiting time and the jump length 

variance of the diffusing Particles are 

divergent(Luchko, 2016). Time fractional 
diffusion equations in the Caputo sense with 

initial conditions are used to model cancer 

tumor(Iyiola & Zaman, 2014). 

 Nonlinear diffusion equations play a great role 
to describe the density dynamics in a material 

undergoing diffusion in a dynamic system which 

includes different branches of science and 
technology. The classical and simplest diffusion 

equation which is used to model the free motion 

of the particle is: 

   1.1                                                              0A ,,()(),(
),(

2

2















txuxF

x
txu

x
A

t

txu
, 

where ),( txu  is the probability density function 

of finding a particle at the point x  in time 

instant t , )(xF is the external force, and A is a 

positive constant which depends on the 

temperature, the friction coefficient, the 

universal gas constant and  the Avogadro 
number (A.Kumaret al., 2017). 

Recently, the fractional differential equations 

have gained much attention of researchers due 
to the fact that they generate fractional 

Brownian motion which is generalization of 

Brownian motion(Podlubny, 1999).Das, Visha, 

Gupta and Saha Ray(2011) stated that time 
fractional diffusion equation, which is one of the 

fractional differential equations, is obtained 

from the classical diffusion equation in 

mathematical physics by replacing the first 

order time derivative by a fractional derivative 

of order  where 10  . Time fractional 

diffusion equation is an evolution equation that 
generates the fractional Brownian motion 

(FBM) which is a generalization of Brownian 

motion (Das, et al., 2011; Podlubny, 1999). Due 
to the fact that fractional derivative provides an 

excellent tool for describing memory and 

hereditary properties for various materials and 
processes(Caputo & Mainardi, 1971), thetime 

fractional diffusion equations(A.Kumar et al., 

2017; Cetinkaya & Kiymaz, 2013;Das, 

2009;Kebede, 2018; Kumaret al., 2012 ) were 
extended to the form 

   

   


























 b .      , x,  , x;  x, x, , xx; x,  q,,  ,  ; kxf)(x, u   I.C :  subject to

  a .   , x, , x, x, x, , xx,  x, t,  Dβ; F(x)u
x

 u 
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u

nnk
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,which is generalization of equation  1.1 ,was considered in this study. Here, 













  ),,,(),( 21

1 txxxu
t

JtxuD ntt 
, and  ,t, x, , xxuu n21 . 

The fractional derivative

tD is considered in the 

Caputo sense which has the main advantage that 

the initial conditions for fractional differential 
equations with Caputo derivative take on the 

same form as for integer order differential 

equations (Caputo, 1967). Due to this, 
considerable works on fractional diffusion 

equations have already been done by different 

authors to obtain exact, approximate analytic 

and pure numerical solutions by using various 

developed methods. 

Recently, Adomian Decomposition Methodby 

Saha Ray and Bera in 2006 ( As cited in 

Cetinkaya & Kiymaz, 2013; Kumar et al., 2012; 
Das, 2009),variational iteration method ( Das, 

2009), Homotopy Analysis Method(Das, et al., 

2011), Laplace Transform Method (Kumaret al., 
2012), Generalized Differential Transform 
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Method(Cetinkaya & Kiymaz, 2013)and 
Residue fractional power series method 

(Kumaret. al., 2017), fractional reduced 

differential transform method (kebede, 
2018)which have their own inbuilt deficiencies: 

the complexity and difficulty of solution 

procedure for calculation of adomain 

polynomials, the restrictions on the order of the 
nonlinearity term or even the form of the 

boundary conditions and uncontrollability of 

non-zero end conditions, unrestricted freedom to 
choose base function to approximate the linear 

and nonlinear problems, and complex 

computations respectively, were used to obtain 
solutions of (1+1) dimensional time fractional 

diffusion equations with initial conditions. To 

overcome these deficiencies, the iterative 

fractional Laplace transform 
method(IFLTM)was preferably taken in this 

paper to solve (n+1) dimensional time fractional 

diffusion equations with initial conditions of the 

form  a2.1 given that  b2.1  analytically.  

The iterative method was firstly introduced by 

Daftardar-Gejji and Jafari(2006) to solve 

numerically the nonlinear functional equations. 
By now, the iterative method has been used to 

solve many integer and fractional boundary 

value problem ( Daftardar-Gejji & Bhalekar, 

2010). Jafari et al.(2013) firstly solved the 
fractional partial differential equations by the 

use of iterative Laplace transform method 

(ILTM). More recently, Yan (2013),Sharma and 
Bairwa (2015), and Sharma and 

Bairwa(2014)were used ILTM  for solving 

Fractional Fokker-Planck equations, generalized 
time-fractional biological population model, and 

Fractional Heat and Wave-Like Equations 

respectively. 

In this paper, the author has been examined how 

to obtain the solutions of (n+1) dimensional 

time fractional diffusion equations with initial 

conditions in the form infinite fractional power 

series, in terms of Mittage Lefler function of one 

parameter and exact form by the use of iterative 

fractional Laplace transform method (IFLTM). 

The basic idea of IFLTM was developed 

successfully. To see its effectiveness and 

applicability, three test examples were 

presented. Their closed solutions in the form of 

infinite fractional power series and in terms of 

Mittag-Leffler functions in one parameter, 

which rapidly converge to exact solutions, were 

successfully derived by the use iterative 

fractional Laplace transform method (IFLTM). 

The results show that the iterative fractional 

Laplace transform method works successfully in 

solving (n+1) dimensional time fractional 

diffusion equations in a direct way without 

using linearization, perturbation, discretization 

or restrictive assumptions, and hence it can be 

extended to other fractional differential 

equations. 

This paper is organized as follows: in the next 

sections which is the methodology, which is the 

way the study was designed to go through, was 

discussed. In section 3, results and discussion 

which include: some definitions, properties and 

theorems of fractional calculus theory, the 

results which are is the basic idea of fractional 

Laplace transform method, application models  

and discussion of application of the results 

obtained were presented. Finally, conclusions 

are presented in Section 4. 

METHODOLOGY 

In this paper, it was designed to set the 
theoretical foundation of the study to come to its 

objective. Next, it was designed to consider time 

fractional differential equations under initial 

conditions, which are(n+1) dimensional time 
fractional diffusion equations with initial 

conditions of the form(1.2a) given that(1.2b) 

and then use analytical design to solve the 
manalytically by using iterative fractional 

Laplace transform method by following the next 

five procedures sequentially. First, it was 
designed to revisit some basic definitions and 

properties of fractional calculus and Laplace 

transform. Secondly, it was designed to develop 

basic idea of iterative fractional Laplace 
transform method for(3.10a) given that (3.10b) 

and then obtain a remark 3.2.2.1. Thirdly, it was 

designed to obtain closed solutions of (1.2a) 
given that (1.2b) in the form of infinite 

fractional power series by using the remark 

3.2.2.1. Fourthly, it was designed to determine 
closed solutions equations of the form of (1.2a) 

given that (1.2b) in terms of Mittag-Leffler 

functions in one parameter from these infinite 

fractional power series. Lastly, it was designed 
to obtain exact solutions of (1.2a) given that 

(1.2b) for the special case 1 . 

RESULTS AND DISCUSSION 

Preliminaries and Notations 

Fractional Calculus 

Here, some basic definitions and properties of 

fractional calculus and Laplace transform were 

revisited as follows to use them in this paper; 
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see (Kilbas,Srivastava, & Trujillo, 2006; 

Mainardi, 2010;  Podlubny, 1999; Millar & 

Ross, 1993). 

Definition3.1.1. A real valued function

0, ),,(  tIRxtxu , is said to be in the space

IRC   , ,if there exists a real number 

q  such that ),()( 1 txutxu q  , where

)),0[(),(1  IRCtxu and it is said to be in 

the space 
mC if

  INnCtxu m   ,),(  . 

Definition3.1.2.The Riemann-Liouville 

fractional integral operator of order 0  of a 

function -1 ,),(  Ctxu is defined as  

 3.1                                                    

0 ),,(

0,t0  ,),()(
)(

1

),(
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



txu

dxux
txuJ

t
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Consequently, for

-1 ,)( ,)( ,,0,    Cx,tuCx,tuIRC m

, the operator

tJ has the following properties: 

)()()( x,tuJJx,tuJx,tuJJ ttttt

  
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
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 













 ttJ t

)1(

)1(

. 

The Riemann Liouville derivative has the 
disadvantage that it does not allow the 

utilization of initial and boundary conditions 

involving integer order derivatives when trying 

to model real world problems with fractional 
differential equations. To beat this disadvantage 

of Riemann Liouville derivative (Millar & Ross, 

1993; Podlubny, 1999), Caputo proposed a 

modified fractional differentiation operator 

aD

(Caputo & Mainardi, 1971)to illustrate the 

theory of viscoelasticity as follows: 

    3.2                                       0 ,)()(
)(

1
)()( 1 


 






 dfx
m

xfDJxfD m

x

a

mmm

aa

, where   and  ,1  
1

mCfaxmm


  . 

 This Caputo fractional derivative allows the utilization of initial and boundary conditions involving 
integer order derivatives, which have clear physical interpretations of the real situations. 

Definition3.1.3. For the smallest integer that exceeds  ,the Caputo time fractional derivative order 

0  of a function ),( txu is defined as:  
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Theorem3.1.1.If 1, IN,m , 1   

mCu(x,t)mm  then  

),(),( txutxuJD tt 
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The reader is kindly requested to go through (Kilbas, Srivastava, & Trujillo, 2006; Mainardi, 2010) in 
order to know more details about the mathematical properties of fractional derivatives and fractional 

integrals, including their types and history, their motivation for use, their characteristics, and their 

applications. 

Definition3.1.4.According toMillar and Ross(1993), Podlubny(1999), and Sontakke and 
Shaikh(2015), the Mittag-Leffler function, which is a one parameter generalization of exponential 

function, is defined as  
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Definition3.1.5. (Kilbas, Srivastava, & Trujillo, 2006) Laplace transform of 0),( tt  is  

(3.5)                                                                                        )()()]([
0


 dttfesFtfL st
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Main Results 

Some Basic Definitions of Fractional Calculus 

and Laplace Transform  

Here, some definitions of fractional calculus and 

Laplace transform, one theorem and basic idea 

of iterative fractional Laplace transform method 

were developed and introduced. 
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Definition3.2.4. Laplace transform of ),( txuDt


is  
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where ),,,( 21 txxxu n is  1n dimensional function and )0,,,( 21 nxxxu  is the r order derivative 

of ),,,( 21 txxxu n at 0t . 

3.2.2. Basic idea ofIterative fractional Laplace transform method 

The basic idea of this method is illustrated as follows. 

Consider a general  1n  dimensional time fractional non-linear non homogeneous  partial 

differential equation with initial conditions of the form: 
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r xxxgu  , ),,,,( 21 txxxuD nt 
is the Caputo 

fractional derivative of the function,  , L  is the linear operator, N is general nonlinear operator and 

),,,,( 21 txxxf n is the source term respectively. 

Now apply fractional Laplace transform method to  a10.3 given that  b10.3 .as follows. 

Applying the Laplace transform denoted by L  in equation  a10.3 , we obtain:  
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By using equation   9.3 , we get:  
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Taking inverse Laplace transform of equation  12.3 , we get:  
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Now we apply the iterative methodto  13.3 as follows. 

Let u be the solution of  a10.3  and has the infinite series form 
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Since, R is the linear operator, using equation  14.3 , 
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Since N is the non-linear operator, by using equation  14.3 , N is decomposed as: 
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By substituting Equations  14.3 ,  15.3  and  16.3  in Equation  13.3 , we get 
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Now from Equation  17.3 , we define recurrence relations as follows: 
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 Continuing with this procedure, we get 
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Therefore the 
thi term approximate solution of Equation  a10.3 given that  b10.3 in  series form 

is given by 

 233     321 ;~
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The infinite power series form solution of  a10.3 given that  b10.3  as INp  approaches , is 

obtained fromEquation  23.3 and it is given as Equation  14.3 . 

The solution of  a10.3 given that  b10.3  in term of Mittag Leffler function of one  parameter is 

obtained from step5.   
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which is given by Equation  19.3 becomes  
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Applications 

To validate (show) the simplicity, effectiveness 
and applicability of iterative fractional Laplace 

transform method (IFLTM) for determining 

closed solutions of (n+1) dimensional time 

fractional diffusion equations of the form  a2.1

given that  b2.1  in infinite fractional power 

series form, in terms of Mittag-Leffler functions 

in one parameter and exact form, 

threeapplication examples were considered and 
solved as follows. 

Example3.2.1.1.Taking 1 ,)( 11  xxF in

 a2.1 and choosing 1)( 1 xf in  b2.1

(A.Kumar et al., 2017; Cetinkaya & Kiymaz, 

2013; Kebede, 2018; Kumar et al., 
2012),consider the initial value problem:  
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By Equation  26.3 : 
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Continuing with this process, we obtain that: 
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thi order approximate solution of Equation  a27.3 given that  b27.3 ,denoted by ),(~
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given by: 
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By letting INp to or taking limit of both sides of Equation   3.33 as  INp , the closed 

solution of Equation  3.27a in the form of infinitefractional power seriesdenoted by ),( 1 txu  is: 
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Thus, by using Equation   3.4 in Equation   3.34 , the closed solution of Equation  3.23a in terms of 

Mittag-Leffler functionof one parameter is given by: 
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Lastly, the exact solution of Equation  3.27a , ),( 1 txuexact can be obtained from Equation  3.27 as 
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 3.27b  without loss of generality. 

Table3.1. Absolute error of approximating the solution ofEquation(3.27a) given that Equation(3.27b) 

to5thorderusing IFLTM 

Variables Absolute error,   ),(~),( 1515 txutxuuE exact   

t  1x
 

25.0  50.0  75.0  1  

25.0  25.0  852591.4  827357.0  530995.0  
710515836.3   

25.0  50.0  852591.4  827357.0  530995.0  
530995.0  

710515836.3   
25.0  75.0  852591.4  827357.0  

710515836.3   
25.0  00.1  852591.4  827357.0  530995.0  

710515836.3   
50.0  25.0  317463.6  770632.1  449889.0  

510335403.2   
50.0  50.0  317463.6  770632.1  449889.0  

510335403.2   
50.0  75.0  317463.6  770632.1  449889.0  

510335403.2   
50.0  00.1  317463.6  770632.1  449889.0  

510335403.2   
75.0  25.0  356235.7  253027.2  544978.0  000276.0  
75.0  50.0  356235.7  253027.2  544978.0  000276.0  
75.0  75.0  356235.7  253027.2  544978.0  000276.0  
75.0  00.1  356235.7  253027.2  544978.0  000276.0  
00.1  25.0  108369.8  660339.2  591061.0  001615.0  
00.1  50.0  108369.8  660339.2  591061.0  001615.0  
00.1  75.0  108369.8  660339.2  591061.0  001615.0  
00.1  00.1  108369.8  660339.2  591061.0  001615.0  

Table 3.2. Absolute error of approximating the solution of Equation(3.27a) given that Equation (3.27b) 

to6thorderusing IFLTM 

Variables Absolute error,   ),(~),( 1616 txutxuuE exact   

t  1x
 

25.0  50.0  75.0  1  

25.0  25.0  915278.4  194657.1
 

047116.0  
810249937.1   

25.0  50.0
 

915278.4  194657.1
 

047116.0  
810249937.1   

25.0  75.0  915278.4  194657.1
 

047116.0  
810249937.1   

25.0  00.1  915278.4  194657.1
 

047116.0  
810249937.1   

50.0  25.0  494771.6  791466.1  087453.0  
610652645.1   

50.0  50.0
 

494771.6  791466.1  087453.0  
610652645.1   

50.0  75.0  494771.6  791466.1  087453.0  
610652645.1   

50.0  00.1  494771.6  791466.1  087453.0  
610652645.1   

75.0  25.0  681970.7  32334.2  126940.0  
510919142.2   

75.0  50.0
 

681970.7  32334.2  126940.0  
510919142.2   

75.0  75.0  681970.7  32334.2  126940.0  
510919142.2   

75.0  00.1  681970.7  32334.2  126940.0  
510919142.2   

00.1  25.0  609871.8  827005.2
 

595306.0  000226.0  

00.1  50.0
 

609871.8  827005.2
 

595306.0  000226.0  

00.1  75.0  609871.8  827005.2 595306.0  000226.0  
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00.1  00.1  609871.8  827005.2
 

595306.0  000226.0  

Example3.2.3.2.Taking 1 ,),( 2121  xxxxF , )  , ,( 21 txxuu  and choosing  

2121 ),( xxxxf  ,in Equation  a2.1 , consider the initial value problem:  
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Since 1 ,),( 2121  xxxxF and 2121 ),( xxxxf   
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By Equation  26.3 : 
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Continuing with this process, we obtain that: 
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. 

The 
thi order approximate solution of Equation  a37.3 given that  b37.3 , denoted by ),,(~

21 txxui  is 

given by: 
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By letting INp to or taking limit of both sides of Equation   3.33 as  INp , the closed 

solution of Equation  3.27a in the form of infinite fractional power series denoted by ),,( 21 txxu is: 
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Thus, by using Equation   3.4 in Equation   3.43 , the closed solution of Equation  3.37a in terms of 

Mittag-Leffler function of one parameter is given by: 
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Lastly, the exact solution of equation  3.37a , ),,( 21 txxuexact  can be obtained from Equation  3.27 

as  approaches to 1from left and it is given by 
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th5 order approximate 

solutions,
















1 ,
3

2
 ,

3

1
,,,, 

)1(

)(3
),,(~

21

5

0

21
215 





txx
i

txx
txxu

i

ii

of equation  3.37a given that 

equation  3.37b  without loss of generality. 

Table3.3. Absolute error of approximating the solution of Equation(3.37a) given that Equation(3.37b) 

to4thorderusing IFLTM 

Variables 
Absolute error, 

  ),,(~),,( 214214 txxutxxuuE exact 
 

t  1x
 2x

 
3

1

 3

2

 

1  

3

1

 3

1

 3

1

 

084832.20  803182.2  031324.0  

3

1

 3

2

 3

2

 

169667.40  606364.5  062648.0  
 

093972.0  

3

1

 

1 1 254500.60  409546.8  
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3

2

 3

1

 3

1

 

182782.41  875512.5  654432.0  

3

2

 3

2

 3

2

 

365564.82  751027.11  308864.1  

3

2

 

1 1 548346.123  626554.17  963296.1  

1 

3

1

 3

1

 

516178.59  990026.16  473692.2  

1 

3

2

 3

2

 

032359.119  980055.33  947384.4  

1 1 1 548536.178  970084.50  421074.7  

Table3.4. Absolute error of approximating the solution of Equation(3.37a) given that Equation (3.37b) 

to5thorderusing IFLTM 

Variables Absolute error,   ),,(~),,( 215215 txxutxxuuE exact   

t  1x
 2x

 
3

1

 3

2

 

1 

3

1

 3

1

 3

1

 

36.532842  25242.3  025768.0  

3

1

 3

2

 3

2

 

06569.73  504837.6  051536.0  

 

077304.0  

3

1

 

1 1 598534.109  757256.9  

3

2

 3

1

 3

1

 

535262.97  539632.11  476655.0  

3

2

 3

2

 3

2

 

070521.195  079261.23  
95331.0  

3

2

 

1 1 60578.292  618892.34  429965.1  

1 

3

1

 3

1

 

187744.167  483632.34  123692.1  

1 

3

2

 3

2

 

375491.334  967261.68  247384.2  

1 1 1 563236.501  450892.103  371074.3  

Example3.2.2.3.Taking 1 ,),,( 321

321 
 xxx

exxxF , and )  ,, ,( 221 txxxuu  in  a2.1 and 

choosing 321)(
xxx

exf


 in equation  b2.1 , we have the initial value problem:  
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Since 321),,( 321

xxx
exxxF


 and 321)(

xxx
exf


 ,  

By Equation
 24.3

: 
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By Equation  25.3 : 
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By Equation  26.3 : 
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Continuing with this process, we obtain that: 

   3.51            ,1321  ,0  ,0  ,0   ,0   ,10   ,
)1(

3
),,,(),,,( 321

   

3211321

321

INP,P, , , itxxx
i

te
txxxutxxxu

ixxxi

pi 







 




. 

Then the
thi order approximate solution of Equation  a47.3 given that  b47.3 , denoted by 

),,,(~
321 txxxui is given by: 
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By letting INp to or taking limit of both sides of Equation   3.52 as  INp , the closed 

solution of Equation  3.47a in the form of infinite fractional power series denoted by 
),,,( 321 txxxu

is: 
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Thus, by using Equation   3.4 in Equation   3.53 , the closed solution of Equation  3.47a in terms of 

Mittag-Leffler function of one parameter is given by: 

   3.54                              0 0,  ,0   ,0 ,10 ,3),,,( 321

   

321
321 


txxxtEetxxxu

xxx 


 

Lastly, the exact solution of Equation  3.47a , ),,,( 321 txxxuexact  can be obtained from Equation

 3.54 as  approaches to 1from left and it is given by 

 3.55                                     0 0,  ,0   ,0 1, , ),,,( 321

3   

321
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
txxxeetxxxu txxx

exact 

 

In order to show the agreement between the exact solution, Equation  55.3  and the 
thi order 

approximate solution, Equation  52.3 of Equation  3.47a given that  3.47b , the absolute errors: 

  ),,,(~),,,( 32143214 txxxutxxxuuE exact  and   ),,,(~),,,( 32153215 txxxutxxxuuE exact  were 

computed as shown below by tables3.5 and3.6 by considering the 
th4 order approximate solutions ,


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and the 
th5 order approximate 

solutions ,





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


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3215

321


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k

te
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i

kxxxi

of Equation  3.47a 

given that  3.47b  without loss of generality. 

Table3.5. Absolute error of approximating the solution of Equation(3.47a) given that (3.47b) to4thorderusing 
IFLTM 

Variables Absolute error,   ),,,(~),,,( 32143214 txxxutxxxuuE exact   

t  1x
 2x

 3x
 

3

1


 3

2


 

1  

3

1

 3

1

 3

1

 3

1

 

894351.81  11429758  027033.0  

3

1

 3

2

 3

2

 3

2

 

611942.222  570542.30  073517.0  
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3

1

 

1 1 1 121992.605  455123.84  
 

199811.0  

3

2

 3

1

 3

1

 3

1

 

919612.167  956946.23  446234.8  

3

2

 3

2

 3

2

 3

2

 

45283.456  121748.65  479623.11  

3

2

 

1 1 1 767433.1240  01926.177  803233.20  

1 

3

1

 3

1

 3

1

 

672618.242  275518.69  086288.10  

1 

3

2

 3

2

 3

2

 

652584.659  310399.188  417373.27  

1 1 1 1 121606.1793  880752.511  528128.74  

Table 3.6.Absolute error of approximating the solution of Equation(3.47a)given that(3.47b) to5thorder using 

IFLTM  

Variables 
Absolute error, 

  ),,,(~),,,( 32153215 txxxutxxxuuE exact 
 

t  1x
 2x

 3x
 

3

1


 3

2


 

1  

3

1

 3

1

 3

1

 3

1

 

148.959841 261491.13  165307.0  

3

1

 3

2

 3

2

 3

2

 

914862.404  048454.36  449334.0  

 

221402.1  

3

1

 

1 1 1 672701.1100  989863.97  

3

2

 3

1

 3

1

 3

1

 

692495.397  051958.47  446234.8  

3

2

 3

2

 3

2

 3

2

 

040267.1081  900466.127  
479623.11  

3

2

 

1 1 1 572099.2938  669517.347  803233.20  

1 

3

1

 3

1

 3

1

 

69511.681  604345.140  581767.4  
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1 

3

2

 3

2

 3

2

 

039446.1853  20222.382  454535.12  

1 1 1 1 083448.5037  933356.1038  854916.33  

DISCUSSION 

Here, the results obtained from the three 

application examples considered above are 

discussed. Through the  three examples above, 

the iterative fractional Laplace transform 

method (IFLTM)was successfully applied to the 

time fractional diffusion equations, that is, 

Equation  a2.1 given that  b2.1 , for

11)( xxF  with initial conditions 1)( 1 xf , 

2121 ),( xxxxF  with initial conditions

2121 ),( xxxxf  , 321),,( 321

xxx
exxxF




with initial conditions 321),,( 321

xxx
exxxf


 , 

1 and 10   . 

As a result, through example one, the closed 

solutions of Equation  a2.1 given that  b2.1 in 

the form of infinite fractional power series and 

in terms of Mittag-Leffler function in one 

parameter as well as its exact solution were 

obtained and they are in complete agreement 

with the results obtained byCetinkaya and 

Kiymaz(2013), kebede(2018), Kumar et 

al.(2012)and A. Kumar et al.(2017). For 
2

1
  

with )( 1xF ,  and )( 1xf specified in example 

one above, the closed solutions of equation

 a2.1 given that  b2.1 in the form of infinite 

fractional power series and in terms of Mittag-

Leffler function in one parameter as well as the 

irex act solution, which were obtained by 

IFLTM, are in complete agreement with the 

results obtained bykebede(2018)and S. Das 

(2009). 

From the application of IFLTM to Equation

 a2.1 given that  b2.1 through the second and 

third examples above, where

2121 ),( xxxxF  with initial condition

2121 ),( xxxxf  , 321),,( 321

xxx
exxxF




with initial condition 321),,( 321

xxx
exxxf




and 10   ,the closed solutions in the form of 

infinite fractional power series and in terms of 

Mittag-Leffler function in one parameter as well 

as exact solution were obtained. 

Without loss of generalitythe5thand6thorder approximate solutions of Equation

       1 ,75.0 ,5.0 ,25.0  ,1 ,75.0 ,5.0 ,25.01 ,75.0 ,5.0 ,25.0),( ;27.3 1  txa

, and the 4rd and5thorder approximate solutions of Equations:  a37.3 and  a47.3
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respectively were considered to compute 

absolute errors in this paper. The validity, 

accuracy and convergence of the IFLTM was 

checked through the computed absolute errors: 

 

 









),(~),(

),(~),(

2616

1515

txutxuuE

txutxuuE

exact

exact

;

   1,01 ,75.0 ,5.0 ,25.0 

 
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




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),,(~),,(

),,(~),,(

215215
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txxutxxuuE

txxutxxuuE

exact

exact
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

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),,,(~),,,(

),,,(~),,,(
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txxxutxxxuuE

txxxutxxxuuE

exact

exact

;  1,01 ,
3

2
 ,

3
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









  

,where ,t)(xu 15 is the 5th order approximate 

solutions, ,t)(xu 16 is the 6th order approximate 

solutions and ,t)(xuexact 1 is the exact solutions of 

example one; ,t)x(xu 214 , is the 4th order 
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approximate solutions, ,t)x(xu 215 , is the 5th 

order approximate solutions and ,t)x(xuexact 21,

is the exact solution of example two;

,t)xx(xu 3214 ,, is the 4th order approximate 

solutions, ,t)xx(xu 3215 ,, is the 5th order 

approximate solutions and ,t)xx(xuexact 321 ,, is 

the exact solution of example three. From 

observation made through tables 3.1 to 3.6,the 

absolute errors: (u)E5 and (u)E6 decrease as

 1 ,75.0 ,5.0 ,25.0 increases from 0.25 to 1; 

(u)E4  and (u)E5  decrease as








 1 ,
3

2
 ,

3

1


increases from 
3

1
to 1. These imply that the 5th 

order approximate solutions and the 6th order 

approximate solutions of Equation 

(3.27a)converge to their exact solution as 

 1 ,75.0 ,5.0 ,25.0 increases from 0.25 to 1; 

the 4th order approximate solutions and the 5th 

order approximate solutions of 

Equations(3.37a)and (3.47a)converge to their 

exact solutions as








 1 ,
3

2
 ,

3

1
 increases from 

3

1
to 1.It was also observed that (u)E(u)E 65   

for each

   1 ,75.0 ,5.0 ,25.01 ,75.0 ,5.0 ,25.0),( 1 tx

and for each  1 ,75.0 ,5.0 ,25.0  throughout 

tables: 3.1 and 3.2; (u)E(u)E 54   for each



























 1 ,
3

2
 ,

3

1
1 ,

3

2
 ,

3

1
1 ,

3

2
 ,

3

1
),,,( 21 txx  

and for each








 1 ,
3

2
 ,

3

1
  throughout tables: 

3.3 and 3.4; (u)E(u)E 54   for each




































 1 ,
3

2
 ,

3

1
1 ,

3

2
 ,

3

1
1 ,

3

2
 ,

3

1
1 ,

3

2
 ,

3

1
),,,,( 321 txxx

 and for each








 1 ,
3

2
 ,

3

1
  throughout tables: 

3.5 and 3.6. 

These show that the validity, accuracy and 

convergence of the fractional power series 

solutions of equations (3.27a), (3.37a) and 

(3.47a) can be improved by calculating more 

term in the series solutions by using the present 

method, IFLTM. 

CONCLUSION 

In this study, basic idea of iterative fractional 

Laplace transform method (IFLTM) for 
solving(n+1) dimensional time fractional 

diffusion equations with initial conditions of the 

form(1.2a) given that (1.2b) was developed. The 

IFLTM was applied to three (n+1) dimensional 
time fractional diffusion equations with initial 

conditions to obtain their closed solutions in the 

form of infinite fractional power series andin 
terms of Mittag-Leffler functions in one 

parameter which rapidly converge to exact 

solutions. The closed solutions in the form of 

infinite fractional power series and in terms of 
Mittag-Leffler functions in one parameter, 

which rapidly converge to exact solutions, were 

successfully derived by the use of iterative 
fractional Laplace transform method (IFLTM). 

The results evaluated for the first time fractional 

diffusion equations is in a good agreement with 
the one already existing in the literature. 

Precisely, IFLTM works successfully in solving 

time fractional diffusion equations with initial 

conditions to obtain their closed solutions in the 
form of infinite fractional power series andin 

terms of Mittag-Leffler functionin on parameter 

as well as exact solutions with a minimum size 
of calculations. 

Thus, we can conclude that the IFLTM used in 

solving time fractional diffusion equations with 
initial conditions can be extended to solve other 

fractional partial differential equations with 

initial conditions which can arise in fields of 

sciences. 
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