
International Journal of Research Studies in Science, Engineering and Technology 

Volume 4, Issue 7, 2017, PP 35-44 

ISSN : 2349-476X 

  
 

 

International Journal of Research Studies in Science, Engineering and Technology V4 ● I7 ● 2017          35 

Instability in Walters B ‘Visco Elastic Dusty Fluid through Porous 

Medium 

Pardeep Kumar 

Department of Mathematics, ICDEOL, Himachal Pradesh University, Shimla, India 

*Corresponding Author: Pardeep Kumar, Department of Mathematics, ICDEOL, Himachal Pradesh 

University, Shimla, India 

Received Date: 19-08-2017 Accepted Date: 21-09-2017           Published Date:17-10-2017 

 
 

INTRODUCTION 

A detailed account of the theoretical and 
experimental study of thermal instability 
(Be'nard convection) in Newtonian fluids, under 
varying assumptions of hydrodynamics and 
hydromagnetics, has been treated in detail by 
Chandrasekhar [1]. The use of Boussinesq 
approximation has been made throughout, 
which states that the density may be treated as a 
constant in all the terms in the equations of 
motion except the external force term. Chandra 
[2] observed that in an air layer, convection 
occurred at much lower gradients than predicted 
if the layer depth was less than 7 mm, and called 
this motion “Columnar instability”. However, a 
Benard-type cellular convection was observed 
for layers deeper than 10 mm. Chandra [2] 
added an aerosol to mark the flow pattern. Thus 
there is a decades-old contradiction between the 
theory and the experiment. Scanlon and Segel 
[3] have considered the effect of suspended 
particles on the onset of Benard convection and 
found that the critical Rayleigh number was 
reduced solely because the heat capacity of the 
pure fluid was supplemented by that of the 
particles. The effect of suspended particles was 
thus found to destabilize the layer. Palaniswamy 

and Purushotham [4] have considered the 
stability of shear flow of stratified fluids with 
fine dust and have found the effect of fine dust 
to increase the region of instability. The medium 
has been considered to be non-porous and the 
fluid to be Newtonian in all the above studies. 

Lapwood [5] has studied the stability of 
convective flow in a porous medium using 
Rayleigh‟s procedure. Wooding [6] has 
considered the Rayleigh instability of a thermal 
boundary layer in flow through porous medium. 
The gross effect when the fluid slowly 
percolates through the pores of the rock is 
represented by the well known Darcy‟s law. The 
problem of thermal instability in fluids in a 
porous medium is of importance in geophysics, 
soil sciences, ground water hydrology and 
astrophysics. The development of geothermal 
power resources has increased general interest, 
in the properties of convection in porous media. 
The effect of a magnetic field on the stability of 
such a flow is of interest in geophysics, 
particularly in the study of Earth‟s core where 
the Earth‟s mantle, which consists of conducting 
fluid, behaves like a porous medium which can 
become convectively unstable as a result of 
differential diffusion. The other application of 
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the results of flow through a porous medium in 
the presence of a magnetic field is in the study 
of the stability of a convective flow in the 
geothermal region. 

The importance of non-Newtonian fluids in 
modern technology and industries is ever 
increasing and the investigations on such fluids 
are desirable. One such class of non-Newtonian 
fluids is Walters B fluid. Chakraborty and 
Sengupta [7] have studied the flow of unsteady 
viscoelastic (Walters B liquid) conducting fluid 
through two porous concentric non-conducting 
infinite circular cylinders rotating with different 
angular velocities in the presence of uniform 
axial magnetic field. Sharma and Kumar [8] 
have studied the stability of two superposed 
Walters B viscoelastic liquids. In another study, 
Sharma and Kumar [9] have studied the 
Rayleigh-Taylor instability of two superposed 
conducting Walters B elastico-viscous fluids in 
hydromagnetics. Kumar [10] has studied the 
stability of two superposed viscoelastic (Walters 
B) fluid-particle mixtures in porous medium. 
MHD flow of viscoelastic (Walters liquid model 
B') fluid through porous medium with heat 
source has been considered by Bhagwat and 
Kuldeep [11].  Attia and  Abdeen [12] have 
studied the stability of flow through a porous 
medium of a viscoelastic fluid above a 
stretching plate. Magneto gravitational 
instability of a Walters B' viscoelastic rotating 
anisotropic heat-conducting fluid in Brinkman 
porous medium has been considered by Sayed 
and Hussein [13].  

In many geophysical fluid dynamical problems 
encountered, the fluid is electrically conducting 
and a uniform magnetic field of the Earth 
pervades the system. A study has, therefore, 
been made to study the effect of suspended (or 
dust) particles on the Walters B viscoelastic 
fluid heated from below in porous medium in 
the presence of a uniform horizontal magnetic 
field. The problem is often encountered in 
chemical engineering, paper and pulp 
technology and several geophysical situations.  

FORMULATION OF THE PROBLEM AND 

PERTURBATION EQUATIONS 

Here we consider an infinite horizontal layer of 

an electrically conducting Walters B 
viscoelastic fluid permeated with suspended 
(dust) particles and bounded by the planes z = 0 

and z = d in a porous medium. This layer is 

heated from below so that, the temperatures and 

densities at the bottom surface z = 0 are T0 and 

0 and at the upper surface z = d are Td and d 
respectively and that a uniform temperature 

gradient 










dz

dT

 is maintained. A uniform 

horizontal magnetic field  00,,HH


 and gravity 

field  g,,g 00


 pervades the system.   

The equations of motion and continuity for 

Walters B viscoelastic fluid in the presence of 

suspended particles and magnetic field in porous 
medium are 
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Where 

       ,,,,,,,,,, txNtxqwvuqTp d


 

and   denote fluid pressure, density, 

temperature, filter velocity, suspended particles 

velocity, suspended particles number density, 

kinematic viscosity and kinematic 

viscoelasticity respectively.  Symbol ''  is the 

medium porosity, k1 is the medium 

permeability, g is the acceleration due to gravity, 

   100 ,,,z,y,xx 


 and 
 6K

, 

 

being the particle radius, is the Stokes‟ drag 

coefficient.  

Assuming a uniform particle size, a spherical 
shape and small relative velocities between the 
fluid and particles, the presence of particles adds 
an extra force term in the equations of motion 
(1), proportional to the velocity difference 
between the particles and the fluid.   

Since the force exerted by the fluid on the 

particles is equal and opposite to that exerted by 

the particles on the fluid, there must be an extra 

force term, equal in magnitude but opposite in 

sign, in the equations of motion for the particles. 

Interparticle reactions are ignored because the 

distances between the particles are assumed to 

be quite large compared with their diameter. The 

effects due to pressure, gravity, Darcy‟s force 

and magnetic field on the particles are small and 

so are ignored.  If mN is the mass of particles 

per unit volume, then the equations of motion 

and continuity for the particles, under the above 

assumptions, are 
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If Cv, Cpt, T and q  denote the heat capacity of 
fluid at constant volume, heat capacity of the 

particles, temperature and „effective thermal 

conductivity‟ of the pure fluid, respectively. 

Assuming that the particles and the fluid are in 
thermal equilibrium, the equation of heat 

conduction gives, 
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Where ss C,
 are the density and the heat 

capacity of the solid (porous matrix) material 
respectively. 

The Maxwell‟s equations yield. 
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where η stands for the electrical resistivity. 

The equation of state for the fluid is 

  00 1 TT  ,                                      (8) 

where α is the coefficient of thermal expansion 

and the suffix zero refers to values at the 

reference level z = 0. The kinematic viscosity , 

kinematic viscoelasticity  , magnetic 

permeability e , electrical resistivity   and 

coefficient of thermal expansion   are all 

assumed to be constants. 

The basic motionless solution is   

       

,,)1(,,)0,0,0(,)0,0,0( 000 NNzzTTqq d  
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a constant.                       (9) 

Assume small perturbations around the basic 
solution and let 
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 
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 denote respectively the perturbations 

in fluid pressure p, density ρ, temperature T, 

fluid velocity (0, 0, 0), suspended particles 
velocity (0, 0, 0), suspended particles number 

density N0 and magnetic field  00,,HH


.  The 
change in density δρ caused mainly by the 

perturbation θ in temperature, is given by 

 0 .                                                      (10) 

Then the linearized perturbed equations of 
Walters B viscoelastic fluid become 
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Eliminating dq


 in equation (11) with the help of 

equation (13), writing the scalar components of 

resulting equation and eliminating u, v, hx, hy, 
δp between them, by using equation (12) and 

equation (16), we obtain 
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DISPERSION RELATION 

Here we analyze the disturbances into normal modes and assume that the perturbation quantities are 

of the form           ,exp,,,, ntyikxikzXzzWhw yxz                                                        (20) 

where kx, ky are wave numbers along the x- and y-directions respectively. 

22

yx kkk 
 is the 

resultant wave number and n is, in general , a complex constant.  Using expression (20), equations 
(17)-(19) in non-dimensional form become 
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where we have expressed the coordinates x, y, z in the new unit of length d, time t in the new unit of 
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Eliminating   and X between equations (21) - (23), we obtain 
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 is the Rayleigh number and 


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 is the Chandrasekhar number. 

Here we consider the case in which both the 

boundaries are free, the medium adjoining the 

fluid is perfectly conducting and temperatures at 

the boundaries are kept fixed.  The case of two 

free boundaries is little artificial but allows us to 

have analytical solution.  The boundary 

conditions, appropriate to the problem, are 

(Chandrasekhar [1]) 

0,0,0,0 2  XWDW
   at z = 0 

and z = 1.                                                               (25) 

Using the above boundary conditions (25), it 

can be shown with the help of equations (21) - 

(23) that all the even order derivatives of W 

must vanish for z = 0 and z = 1 and hence the 

proper solution of W characterizing the lowest 

mode is 
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Where W0 is a constant.  

Substituting the proper solution (26) in equation 

(24), we obtain the dispersion relation
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and 
 coskkx . 

THE STATIONARY CONVECTION 

When the instability sets in as stationary 

convection, the marginal state will be 

characterized by σ = 0. Putting σ = 0, the 

dispersion relation (27) reduces to 
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We thus find that for stationary convection the 

viscoelastic parameter F vanishes with σ and 
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Walters B viscoelastic fluid behaves like an 

ordinary Newtonian fluid. 

To study the effects of magnetic field, 

suspended particles and medium permeability, 

we examine the natures of 
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It is clear from equations (29)-(31) that for 

stationary convection the magnetic field 

postpone the onset of convection whereas the 

suspended particles and medium permeability 

hasten the onset of convection in Walters B 

viscoelastic fluid permeated with suspended 

particles, heated from below in porous medium 

in presence of a uniform horizontal magnetic 

field. 

Graphs have been plotted between R1 and x for 

various values of Q1, P and H  .  It is evident 

from Figures (1) - (3) that the magnetic field 

postpones the onset of convection while 

medium permeability and suspended particles 

hasten the onset of convection. 
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MATHEMATICAL ANALYSIS 

We first prove the following lemma: 

Lemma: If 
 , , ,r ii W X    

is a non-trivial solution of the double eigen value problem for 

ir and 
 described by the equations (21)-(23) with the boundary conditions (25). Then a necessary 

condition for 
 0..0  irei 

 to be an eigen value is that  

 
1 12 4 2

2 2 22

2 2

0 0

.
d H

D a dz W dz


 


    

 

Proof of Lemma: Since 0  is an eigen value, we have from equation (22) 

 
2

2 2 .
d H

D a W





   

                                                                                                         (32) 

Multiplying both sides of equation (32) by 
*  (the complex conjugate of  ), integrating the 

resulting equation by parts for sufficient number of times over the vertical range of z by making the 

use of boundary conditions (25) and separating the real parts of both sides of the equation so obtained, 
we get 

 
1 1 12 2

2 22 * *

0 0 0

Re Re .
d H d H

D a dz Wdz Wdz
 

 
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                                              (33) 

Now 

 

1
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* dzW
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1
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.

1

0

2
1

0

2

  dzWdz

(by Schwartz inequality) 

Equation (32) and inequality (33) implies that 

 
1 1 12

2 2 2 22

0 0 0

,
d H

D a dz dz W dz





      

                                                               (34) 
which in turn implies that 

1 1 12
2 2 2

0 0 0

,
d H

D dz dz W dz





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                                                                                 (35) 

whence we derive from inequality  (35) using Rayleigh-Ritz inequality 
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222
,dzdzD 

                      
 sin 0 0 1ce at z and z  

                            (36) 

1 12
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2
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.
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
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                                                                                                    (37) 

Inequalities (34) and (37) lead to 

 
21 12
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,
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



 
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 

                                                                          (38) 

and hence the lemma. The contents of the above lemma when presented otherwise from the point of 

view of theoretical hydrodynamics imply that 

Lemma: A necessary condition for the validity of the principle of exchange of stabilities in thermal 

convection configuration of Walters B' viscoelastic fluid in porous medium in the presence of 

magnetic field and suspended particles is that 

 
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
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 
       

We now prove the following theorem: 

Theorem: If 
 , , ,r ii W X    

is a non-trivial solution of the double eigen value problem for 

ir and 
 described by the equations (21)-(23) with the boundary conditions (25) for given values 

of other parameters, then a sufficiency condition for the invalidity of 
 0..0  irei 

 to be 

an eigen value is that 
2

1.lRH P






  

Proof: Multiplying equation (21) by W*, the complex conjugate of W, integrating over the range of z 

and using equations (22) and (23) together with the boundary conditions (25), we obtain 
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where 
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and σ* is the complex conjugate of σ.  The integrals I1, I2, …., I5 are all positive definite.  

Putting 
0r

 and

0

0

mN
f




in equation (39) and separating the real and imaginary parts of the 
resulting equation, we derive 
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                                                   (40) 

and  
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Equations (40) and (41) must be satisfied when 0r . Further since i
 is also zero as a necessary 

condition of the theorem, equation (41) is identically satisfied while equation (40) reduces to 
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Now making use of inequality (38) and the inequality  

  

1

0
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22222
dzWadzWaDW

 , (which is always valid), 

we derive from the equation (42) 

2

1 2 42

0

12
2

42

00

1

4

1 ,
4

e

l

l e

l

ga
I I I

P H d

H PRa
W dz I

P

 

  

 

  

 
   

 

  
   

  


                                                                                        (43)  

where 

 4dg
R 

 is the thermal Rayleigh number. 

Now if  
2

1lH PR






, then the right hand side of 

inequality (43) is  a positive definite which in 

turn implies that the left hand side of the 

inequality (43) must also be positive definite 

and therefore (42) cannot be satisfied. Thus a 

sufficiency condition for the invalidity of zero 

being an eigen-value for   is that 
2

1lH PR






. 

It is clear from above that when regions outside 

the fluid are perfectly conducting 

     ,0
0

2

1

2
 KKa

                             (44) 

and hence the above analysis holds good for this 

case. 

Presented otherwise from the point of view of 

theoretical hydrodynamics, we have the 

following theorem:  

Theorem: A sufficiency condition for the 

invalidity of principle of exchange of stabilities 
in a thermal convection configuration of Walters 

B' viscoelastic fluid in porous medium in the 

presence of suspended particles and magnetic 

field is that the thermal Rayleigh number R , the 

medium permeability lP
 and suspended 

particles parameter H  are restricted by the 

inequality 
2

1lH PR






, 

or in the context of over stability, we can state 
the above theorem as:  

Theorem: A sufficiency condition for the 

existence of over stability in a thermal 
convection configuration of Walters B' 

viscoelastic fluid in porous medium in the 

presence of suspended particles is that the 

thermal Rayleigh number R , medium 

permeability lP
 and suspended particles 

parameter H  are restricted by the inequality 

2
1lH PR






. 

Stability of the system and oscillatory modes 

Equation (41) yields that 
0i  or 

0i , 

which means that modes may be non-oscillatory 

or oscillatory.  In the absence of magnetic field 

and viscoelasticity, equation (41) reduces to 
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and the quantity inside the brackets is positive 

definite. Thus
0i , which means that 

oscillatory modes are not allowed and the 
principle of exchange of stabilities is valid.  The 

magnetic field and viscoelasticity introduce 

oscillatory modes (as i  may not be zero) in the 

system which was non-existent in their absence. 

CONCLUSIONS 

A layer of Newtonian fluid heated from below, 
under varying assumptions of hydrodynamics 

and hydro magnetics, has been studied by 

Chandrasekhar [1]. With the growing importance 

of non-Newtonian fluids in chemical 
engineering, modern technology and industry, 

the investigations on such fluids are desirable. 

The Walters B' fluid is one such important non-
Newtonian (viscoelastic) fluid. Keeping in mind 

the importance of non-Newtonian fluids, the 

present paper considered the effect of suspended 
particles on the Walters B' viscoelastic fluid 

heated from below in porous medium in the 

presence of a uniform horizontal magnetic field. 

The main conclusions from the analysis of this 
paper are as follows: 

a) For the case of stationary convection the 

following observations are made: 

 The viscoelastic parameter F vanishes 

with σ and Walters B viscoelastic fluid 

behaves like an ordinary Newtonian fluid. 

 The magnetic field is found to postpone 

the onset of convection whereas the 

medium permeability and suspended 

particles hasten the onset of convection.  

b) It is also observed from Figures (1) - (3) that 

the magnetic field postpones the onset of 

convection while medium permeability and 
suspended particles hasten the onset of 

convection. 

c) A necessary condition for the validity of the 

principle of exchange of stabilities in thermal 
convection configuration of  Walters B' 

viscoelastic fluid in porous medium in the 

presence of magnetic field and suspended 
particles is that 
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2 2 22

0 0

.
d H

D a dz W dz



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 
   

d) The magnetic field and viscoelasticity 

introduce oscillatory modes in the system 

which was non-existent in their absence. 

e) A sufficiency condition for the existence of 

over stability in a thermal convection 
configuration of Walters B' viscoelastic fluid 

in porous medium in the presence of 

suspended particles is that the thermal 

Rayleigh number R , medium permeability 

lP
 and suspended particles parameter H  are 

restricted by the inequality 
2

1lH PR






. 
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