

Kaveh Ostad-Ali-Askari¹*, Saeid Eslamian², Theodore C. Crusberg³, Vijay P. Singh⁴, Nicolas R. Dalezios⁵, Saba AliZadeh⁶, Saeid Godarzi⁷

^{1*}Department of Civil Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

²Department of Water Engineering, Isfahan University of Technology, Isfahan, Iran. ³Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609-2280, U.S.A.

 ⁴Department of Biological and Agricultural Engineering & Zachry Department of Civil Engineering, Texas A and M University, 321 Scoates Hall, 2117 TAMU, College Station, Texas 77843-2117, U.S.A.
 ⁵Laboratory of Hydrology, Department of Civil Engineering, University of Thessaly, Volos, Greece & Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, Athens, Greece.

⁶Department of Urban Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

⁷Department of Civil Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran.

*Corresponding Author: Kaveh Ostad-Ali-Askari, Department of Civil Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

ABSTRACT

Researchers at the office of National Center of Iran's Renewal have succeeded in developing and completing a research methodology that was proposed by the same researchers for the removal of dynamic loads, in particular the load caused by the explosion. The creation of viscous rotary for buried structures against earthquake and dynamic loads with integrating seismic damper with jelly and plasma media can be used in non-operating defense plans in country and for areas with the highest risk. In this research, the summing up of this plan is taken as a solution and the results are presented.

Keywords: Formation, Soil, Explosion Wave, Earthquake, Microscopic, Polymer

INTRODUCTION

According to the history of earthquake in Iran, as well as, the way in which the construction was built in recent years and having high potential for the occurrence of earthquakes in the most crowded city, it is necessary to consider earthquake as an important issue of the society. Destruction of national and human capital because of destructive earthquakes, the necessity of paying attention to the construction of buildings and existing buildings is inevitable. In recent decades, some research has been done in the field of earthquake engineering. All people and researchers have believed that the seismic safety of existing buildings should be included in the country's major programs. One of the ways that have been addressed in different countries in order to cope with the different threats of wave and to the destructive power of earthquakes and explosions was the use of concrete structures, composite structures, retaining walls, concrete shields, virtual structures and etc. The research attempts to develop a new method to improve the behavior and direction of safe havens in country and critical points and special structures.

BACKGROUND

Based on recent studies on recent Northridge earthquakes, such as the earthquake in 1996 in the United States, researcher found that structures constructed in accordance with the regulations were good in terms of providing health and safety, but the amount of damage to

the structures (Such as hospitals and treatment centers whose effectiveness is important) were high and it is economically feasible to repair. In order to reduce earthquake losses, current design guidelines have mostly prepared to decrease earthquake-related loses, and the experiences of recent earthquakes also indicate their effectiveness in reducing the mortality caused by sediment. However, large earthquakes in recent years indicate that the rate of construction and non-construction damages in some cases are very severe and leads to heavy financial losses.

According to the number and extent of vulnerable structures against earthquakes in country, it takes much budget and time to complete and replace all structures. Therefore, the strengthening of existing structures with minimum cost and volume requires only time and materials and it is the best solution to prevent calamities and disasters in the future.

Buried structures like dams that are placed in tunnels, due to the fact that they are one of the most important elements in vital arteries, they should be designed in such a way that during the earthquake and after that they can have good function. It is very important to find ways to improve the seismic structure of buried structures that are not sufficiently resistant to earthquakes.

Some Terms

Different terms and concepts related to the upgrading of the seismic level of reinforcing buildings are used but no definite definitions have been provided for them. Some definitions of some key words are briefly presented.

Reinforcement

Replacing or renovating a new element in an existing building to raise the structural capacity of the main building, so because of the operation, in comparison to the first situation of the building, the strength of the building will reinforce.

Restoration

renovation and/or replacement of a new part in a damaged building and/or a depreciated one in order to obtain a level of resistance or ductility in the building before damage.

Double Modeling

Rebuilding or replacing a new part in the existing building that the owner wants to change its use.

Improvement

It includes building, repairing and re-modeling.

Novation

Renewal or replacement of a new part in a damaged building to achieve the same level of exploitation that the building has had before its damage.

Reconstruction

Reconstruction of buildings in a particular area is used mainly for historical monuments and includes restoration and reinforcement. In order to improve the seismic behavior of buildings against earthquake forces, it is necessary to seismic the capacity of the existing building and the seismic capacity and determine the required capacity.

THE OBJECTIVE OF UNDERGROUND REINFORCEMENT

One of the most important reinforcement functions in safe buildings is protecting the buildings against possible loads. Vulnerability severity, financial cost, and the amount of operation required for the main attributes in the reinforcement of the buildings, especially undergrounds. To achieve these characteristics, we can expand each one as follows:

Vulnerability: Vulnerability of a structure to the earthquake and the importance of the structure. For example, the more important and vulnerable a building, the more need for more safety is felt.

Costs of expenditure: Spending money is reasonable to the extent that the value of the cost spent on the security of the building is equal to its equipment and the function of that building at different times.

The amount of operations needed: In some cases, the cost is less important and the feasibility of retrofitting for reasons such as long time and the lack of facilities is impossible. Therefore, the design should be made according to the applicable retrofitting

COMMON WAYS FOR REINFORCING THE BURIED CONSTRUCTIONS

The reinforcement of buried structures has been considered. There are various designs for rebuilding of buried structures in earthquake counteraction. Of course, each one has its own specific features and methods but one of the problems in these plans is their heavy cost

which is often accompanied by an increase in depth. Because earthquake waves and energy losses; Therefore, an increase in depth will increase the immunity to some extent. In contrast, the use of this method reduces the operation of the structure under exploitation the conditions and increases cost of construction. On the other hand, different layers reinforce a part of the earthquake wave that is closer to the natural frequency of the layer and the lack of attention to this plan during designing brings irreparable damage. For economic reasons, above-mentioned the measures are not fully taken into account in buried structures. On the other hand, due to explosions and earthquake hazards, engineers have been trying to find cost-effective alternatives to reinforce and secure structures.

It should be noted that the experimental studies of resistance to earthquake mitigation are less costly and more feasible. Explosive vibrations are often used to study the earthquake properties of various structures.

The Effect of Wave in Soil"

The properties of earthquake wave change through different environments. The high frequencies are rapidly expanding and lower frequencies will stay stable to longer distances. On the other hand, different layers of the earth amplify parts of the spectrum that are closer to the natural frequency of the layer. If there is a layer on the earth that their frequency be more far from the main spectrum of the wave; therefore, the wave won't be amplified and depreciated. Therefore, the type of the soil plays an important role in the depreciation of the wave and energy and also in the stability of the structure due to static and dynamic forces.

Depreciation of the Wave

Increasing the depreciation coefficient reduces the earthquake's forces in the earth.

- W Angular Frequency
- E Resilience coefficient of materials
- μ Coefficient friction

The depreciation coefficient varies from soil to soil and can be varies10 to 20 variables, which are due to various factors, namely:

• Behavior of the waste

- Friction caused by the surfaces and soil.
- The internal viscosity of particles the friction of porosity between particles and soil resistance.

In grain soils, friction-induced depravation is more important than other factors. It is also noteworthy that the passage of the wave in the porous medium is associated with the distribution of energy (which has been taken into account in the proposed scheme.)

Earthquake Loading on The Structure

It should be noted that laboratory studies of resistance to earthquake explosion are less costly and feasible. Often explosive vibrations are used to study the earthquake properties of different structures.

The behavior of an explosive on an element is generally studied with the help of two important elements:

- The amount of the explosive power, which is measured by TNT.
- Distance of the source of the explosion to the target.

The pressure of the bursts resulting from the explosion decreases exponentially after the blast time interval. According to the tests, this positive pressure can even lead to a negative pressure of depression, which in this case will exacerbate the deterioration. Because of the negative pressure of the structure, it is exposed to forces in the opposite direction. With the explosion (with a given power, TNT) at or near the Earth's surface, the maximum pressure from this spherical burst decreases as a function of distance from the source of the developer.

When an earthquake or explosion occurs in the structure, the structure is exposed to the pressure, reflection and loading results, which may be very complicated. Although this slip is very complicated, the explosion wave can also be calculated based on the load.

The earthquake wave that was a compression before the collision, after the collision and reflection, it becomes a tensile wave. The most damage to the building is due to this tension wave. (Refer to the effect of the earthquake wave).

Impact of Earthquake Wave on Cement

Earthquake waves are released in different parts of the wall of the structure and are reflected and dispersed after reaching the free surfaces of the walls. These waves that were compressed before the collision became a tensile wave after the collision and reflection. The reflection of the stress wave in the structure of reinforced concrete structures results in the creation of a phenomenon called crushing, which is considered as one of the destructive factors of concrete structures made of concrete. Several methods are used to deal with this phenomenon.

A BURIED SOLUTION FOR EARTHQUAKE INSTRUMENTS

When introducing new strategies for earthquake or earthquake retrofitting, an explosion of the structure should be considered in many respects. The structure is one of the most important structures in each military and non military subcategory which is referred to as "safe" structures. However, the cost of rebuilding these structures may be very high, but it can be justified in light of the reduction of financial and life damage occurring in the event of an accident.

Therefore, regard to the above, it is necessary to apply new methods of retrofitting to safety and to reduce the cost-effectiveness of safe structures. In order to rehabilitate these structures, optimal solutions are needed. However, before proposing the proposed method, we should consider the materials in this application.

Polymer Composite Materials (FRP):

These materials are generally a combination of two fibers and resins, in which fibers create reinforcement and resin creates cohesion and integrity, as well as a factor in the distribution and uniform transfer of loads to fibers. Protecting the fibers and connecting them to the surface and transmission of the force from the structure to the fiber is also the responsibility of the resin, while the resin-bonded fiber is used, the tensile strength of the resin is reduced to a factor of two or three times smaller than the tensile strength of the steel.

These materials are very diverse, but a few of them are mentioned below:

(VFRP) Polymer composite materials with carbon fiber

(AFRP) Composite polymer material with aramid fibers

(GFRP) Polymer composite materials with glass fiber

(E-Glass) The most common type is vulnerable to alkaline materials.

AR-Glass: Alkali resistant glass fiber

The reasons for using these materials are:

- The ability to increase the resistance to the desired direction;
- Corrosion and wear resistance;
- Very low weight (to reinforce the wall, the weight of the wall will not be greater and there will be no need for reinforcement)
- Resistant against intermittent loads, dynamic and repetitive loads (they are used on bridges because of tireless.
- Increase the structural behavior
- High speed and high installation
- The behavior is roughly the same in terms of expansion and contraction with concrete.
- Easy transportation.
- Economic efficiency(in spite of the higher unit price of composite materials than other materials, the use of these materials in reinforcement is advantageous for the following reasons):
 - Low weight and no need for reinforcement
 - Low thickness and no reduction of sound infrastructure
 - High installation speed and no need for heavy and heavy machinery
 - Resistant to clogging and no costs for maintenance

Frictional Damper

The damper as one part of the system of side braces includes steel plates that are bolted to each other and generally placed in the middle of the X bracing(shape 1). There is a system for such dampers that can be used at the junction of the column- mounting. These dampers converge

earthquake energy by slipping steel plates on each other to heat energy. Some of the researchers at Tarbiat Modares University managed to construct this better-quality damper a few months ago, which is more detailed.

The method used in this research is on the way that in several stages the energy of the earthquake wave is absorbed so that at least energy of the wave reaches the final concrete; then, by a new type of concrete and with the reinforcement of the armature specifics and the use of dampers and the effects of earthquakes will thwart and minimize the damage. As stated above, this method can be divided into several stages.

Figure1. Friction damper in a steel building

The First Step (Absorption of Energy)

At this stage, the earthquake wave is depleted relative to artificial soil layers, so that the energy generated by the seismic wave is spent only on the displacement of these layers. Increasing the creep behavior in the earth's layers is used for resilient (dense PVC) materials in soils with high porosity.

Then the micro-candles are used which in this method is used by the US Army the earthquake effect decreases.

At the end of this stage, a kind of jelly (plasma) media is used to spread the load at a wider plane; consequently, the load of the earthquake or explosion cannot damage the concrete wall directly. In this case, the destructive effects on building will reach to the least amount; therefore, we can decrease the strength and load intensity within the desired time; consequently, we reduce the amount of destruction.

In this proposed design, the plasma storage environment has the design of separated panels that in a rupture or collapse of a panel, the remaining panels can continue to carry and resist earthquakes or subsequent explosions.

The Second Stage

In this stage is a combination of new materials with FRP concrete the effect of the earthquake will decrease to the minimum (this type of concrete is designed at the Eastern Azarbaijan Jihad Engineering Research Center that minimizes the impact of the earthquake's devastating effect on concrete).

The Third Stage

At this stage, the dampers with the use of frictional dampers and by considering reinforcement method and the minimum distance between reinforcement will neutralize the effect of earthquake.

For caution, you can use candles that are attached to the hardwood floor. The performance of the pleasing piles is on a way that increases the resistance of the vertical walls and consolidates the concrete wall and thus prevents the wall from falling to the inside and damaging the equipment. On the other hand, due to soil mass control and stabilization, it increases the soil resistance around the structure. This way, they will depreciate the dynamic energy; therefore, the use of this method is very suitable for retrofitting various structures. It should be noted that this method seems to be very costly. But the following are noteworthy:

- Some places are important enough to be damaged by earthquakes or explosions.
- Due to the fact that this method is for buried structures and also the compulsion of excavation in this type of structures; thus; the cost of this method is not high.

As you can see in Fig. 1, the conventional and existing methods in country do not meet the burden and are quickly damaged by primary waves. Several different approaches have been proposed to improve many of these burial galleries built and used today. In this research, due to the significant structural weaknesses of these guides, there is no gallery that suggests the use of mechanical fascicles composite shield which combines a flexible metal medium or a plasma environment.

Figure2. The method of placing different layers of dynamical load induced by explosion or earthquake which is commonly used, and its method of optimizing with sponge absorbers and adding shield of composite environment.

Figure3. Different placement patterns for damping the dynamic load caused by an explosion or earthquake which is commonly used to improve the efficiency of it with mechanical drives and to add reinforced composite shields.

Figure4. How to lay a different layer for dynamic damping due to explosion or earthquake without lower defensive shield which may cause structural overturn in high intensity wave.

Figure5. How to lay a different layer for damping the dynamic load caused by explosion or earthquake with lower shield to prevent overturning.

LOWER DEFENSIVE SHIELD

The lower defensive shield increases the efficiency of the gallery in wave bearing and load caused by the explosion and earthquake. As seen in the figure below, the use of the lower shield of the structure against overturning and also against the topical losses due to load loading. Finally, the damage to the structure of the structure prevents the lower part.

THE SKEWED CANDLES

The function of the flying piles is on a way that they increase the reinforcement of the vertical walls and consolidation of the concrete wall with two functions; therefore, they prevent the wall from falling to the inside and damaging the equipment and cause the increase of soil resistance around the structure inasmuch as they stabilize the soil well.

Figure6. How to put different layer for damping the dynamic load caused by explosion or earthquake with lower shield to prevent overturning and using diagonal (micro-candle) for increasing load.

Figure7. Load attenuation method from Infrastructure

RESULTS AND SUGGESTIONS

- 1. According to the research, the use of the above methods while increasing the structure of the load prevents damage to its internal equipment and allows us to use a safe structure after an earthquake or explosion.
- 2. The earthquake waves are reflected, fractured and absorbed by the various layers of the

earth. In this paper, porosity properties are used to increase absorption in the proposed design.

- 3. Explosive resilient structures are generally well tolerated against earthquakes.
- 4. In order to distribute and absorb the wave in the earth, geo membrane is used as very thin layers with thickness in the soil layers.
- 5. Due to the similarity of the borehole and explosion, it is better to use these two reinforcements simultaneously in different structures.

REFERENCES

- Ostad-Ali-Askari, K., Shayannejad, M. 2015, Study of sensitivity of Autumnal wheat to under irrigation in Shahrekord, Shahrekord City, Iran. International Journal of Agriculture and Crop Sciences, 8 (4), 602-605.
- [2] Shayannejad, M., Akbari, N., Ostad-Ali-Askari, K. 2015, Study of modifications of the river physical specifications on muskingum coefficients, through employment of genetic algorithm. International Journal of Development Research, 5(3), 3782-3785.
- [3] Ostad-Ali-Askari, K., Shayannejad, M. 2015, The Reviews of Einstein's Equation of Logarithmic Distribution Platform and the Process of Changes in the Speed Range of the Karkheh River, Khuzestan province, Iran. International Journal of Development Research, 5(3), 3786-3790.
- [4] Ostad-Ali-Askari, K., Shayannejad, M., Ghorbanizadee-Kharazi, H. 2015, Assessment of artificial neural network performance and exponential regression in prediction of effective rainfall, International Journal of Development Research, 5(3),3791-3794.
- [5] Shayannejad, M. Akbari, N. and Ostad-Ali-Askari, K. 2015, Determination of the nonlinear Muskingum model coefficients using genetic algorithm and numerical solution of the continuity. Int. J. of Science: Basic and Applied Research, 21(1),1-14.
- [6] Ostad-Ali-Askari, K., Shayannejad, M. 2015, The Study of Mixture Design for Foam Bitumen and the Polymeric and Oil Materials Function in Loose Soils Consolidation. Journal of Civil Engineering Research, 5(2), 39-44. DOI: 10.5923/j.jce.20150502.04
- [7] Sayedipour, M., Ostad-Ali-Askari, K., Shayannejad, M. 2015, Recovery of Run off of the Sewage Refinery, a Factor for Balancing the Isfahan-Borkhar Plain Water Table in Drought Crisis Situation in Isfahan Province-Iran. American Journal of Environmental Engineering, 5(2): 43-46. DOI: 10.5923/j.ajee.20150502.02

- [8] Ostad-Ali-Askari, K., Shayannejad, M. 2015, Developing an Optimal Design Model of Furrow Irrigation Based on the Minimum Cost and Maximum Irrigation Efficiency. International Bulletin of Water Resources & Development, 3(2), 18-23.
- [9] Ostad-Ali-Askari K. Groundwater. Horoufchin publisher, First Edition, 2015. ISBN: 978-600-7419-33-5. Isfahan, Iran.
- [10] Shayannejad M, Ostad-Ali-Askari K. Modeling of solute movement in groundwater. Kankash publisher. First edition, 2015. ISBN: 978-600-136-256-9. Isfahan, Iran.
- [11] Shayannejad M, Ostad-Ali-Askari K. Optimization and its application in water resources management. Kankash publisher. First edition, 2015. ISBN: 978-600-136-248-4. Isfahan, Iran.
- [12] Ostad-Ali-Askari K. Nitrate pollution in groundwater. Horoufchin publisher, First Edition, 2015. ISBN: 978-600-7419-23-6. Isfahan, Iran.
- [13] Ostad-Ali-Askari, K., Shayannejad, M. 2015, Presenting a Mathematical Model for Estimating the Deep Percolation Due to Irrigation. International Journal of Hydraulic Engineering, 4(1), 17-21. DOI: 10.5923/j.ijhe.20150401.03.
- [14] Ostad-Ali-Askari, K., Shayannejad, M. 2015, Usage of rockfill dams in the HEC-RAS software for the purpose of controlling floods. American Journal of Fluid Dynamics, 5(1), 23-29. DOI: 10.5923/j.ajfd.20150501.03.
- [15] Ostad-Ali- Askari, K., Shayannejad, M. 2015, The effect of heterogeneity due to inappropriate tillage on water advance and recession in furrow irrigation. Journal of Agricultural Science, 7(6), 127-136.
- [16] Shayannejad, M., Ostad-Ali-Askari, K. 2015, Effects of magnetized municipal effluent on some chemical properties of soil in furrow irrigation. International Journal of Agriculture and Crop Sciences, 8(3), 482-489.
- [17] Ostad-Ali-Askari K, Shayannejad M, Golabchian M. Numerical methods in groundwater. Kankash publisher. First edition, 2015. ISBN: 978-600-136-276-7. Isfahan, Iran.
- [18] Ostad-Ali-Askari, K., Shayannejad, M. 2015, Optimal design of pressurized irrigation laterals installed on sloping land. International Journal of Agriculture and Crop Sciences, ISSN 2227-670X. 8(5), 792-797.
- [19] Ostad-Ali-Askari K, Shayannejad M, Eslamian S, Jahangiri A.K, Shabani A.H, Environmental Hydraulics of Open Channel Flows. Kankash Publisher. First Edition, 2015. ISBN: 978-600-136-303-0.
- [20] Ostad-Ali-Askari K, Shayannejad M, Eslamian S, Navab-Pour B. 2016, Comparison of solution of Saint-Venant equations by characteristics and finite difference methods for unsteady flow

analyzing in open channel. International Journal of Hydrology Science and Technology, 6(3), 9-18.

- [21] Ostad-Ali-Askari K, Shayannejad M, Eslamian S, et al. 2017, Deficit Irrigation: Optimization Models. Management of Drought and Water Scarcity. Handbook of Drought and Water Scarcity, Taylor & Francis Publisher, USA. Vol. 3. 1th Edition, pp: 373-389.
- [22] Shayannejad M, Ostad-Ali-Askari K, Eslamian S, et al. 2017, Development of a new method for determination of infiltration coefficients in furrow irrigation with natural non-uniformity of slope. Sustain. Water Resour. Manag., 3(2): 163-169.
- [23] Shojaei N, Shafaei-Bejestan M, Eslamian S, Marani-Barzani M, P. Singh V, Kazemi M, Ostad-Ali-Askari K. 2017, Assessment of Drainage Slope on the Manning Coarseness Coefficient in Mountain Area. International Journal of Constructive Research in Civil Engineering (IJCRCE), 3(1): 33-40.
- [24] Bahmanpour H, Awhadi S, Enjili J, Eslamian S, Ostad-Ali-Askari K. 2017, Optimizing Absorbent Bentonite and Evaluation of Contaminants Removal from Petrochemical Industries Wastewater. International Journal of Constructive Research in Civil Engineering (IJCRCE), 3(2): 34-42.
- [25] Shayannejad M, Eslamian S, Gandomkar A, Marani-Barzani M, Amoushahi-Khouzani M, Majidifar Z, Rajaei-Rizi F, Kazemi M, P. Singh V, Dehghan SH, Shirvani-Dastgerdi H.R, Norouzi H, Ostad-Ali-Askari K. 2017, A Proper Way to Install Trapezoidal Flumes for Measurements in Furrow Irrigation Systems. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 3(7): 1-5.
- [26] Dehghan Sh, Kamaneh S.A.A., Eslamian S, Gandomkar A, Marani-Barzani M, Amoushahi-Khouzani M, Singh V.P., Ostad-Ali-Askari K. 2017, Changes in Temperature and Precipitation with the Analysis of Geomorphic Basin Chaos in Shiraz, Iran. International Journal of Constructive Research in Civil Engineering (IJCRCE), 3(2): 50-57.
- [27] Eslamian S, Mirabbasi-Najafabadi R, Ostad-Ali-Askari K. Advance Engineering Statistics (Simulation and Modeling of Uncertainty and Sensitivity Analysis). Kankash Publisher. First Edition, 2017. ISBN: 978-600-136-359-7. Isfahan, Iran.
- [28] Ostad-Ali-Askari K, Shayannejad M. 2016, FLOOD ROUTING IN RIVERS BY MUSKINGUM'S METHOD WITH NEW ADJUSTED COEFFICIENTS. International Water Technology Journal, IWTJ, 6(3): 189-194.
- [29] Godarzi A, Eslamian S, Ostad-Ali-Askari K. Water in Literature Aspects (Social and Cultural Aspects). Publication of Tehran Municipality.

First Edition, 2016. ISBN: 978-600-439-096-5. Tehran, Iran.

- [30] Ostad-Ali-Askari K, Eslamian S, Shayannejad M, et al. Groundwater Hydrodynamic. Horoufchin Publisher. First Edition, 2016. ISBN: 978-600-7419-53-3. Isfahan, Iran.
- [31] Ostad-Ali-Askari K, Shayannejad M, Ghorbanizadeh- Kharazi H. 2017, Artificial Neural Network for Modeling Nitrate Pollution of Groundwater in Marginal Area of Zayandehrood River, Isfahan, Iran. KSCE Journal of Civil Engineering, 21(1):134-140. Korean Society of Civil Engineers. DOI 10.1007/s12205-016-0572-8.
- [32] Shayannejad M, Ostad-Ali-Askari K, Ramesh A, Singh V.P., Eslamian S. 2017, Wastewater and Magnetized Wastewater Effects on Soil Erosion in Furrow Irrigation. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 3(8): 1-14. http://dx.doi.org /10.20431/2454-6224.0308001.
- [33] Shayannejad M, Soltani-Toudeshki A.R, Arab M.A, Eslamian S, Amoushahi-Khouzani M, Marani-Barzani M, Ostad-Ali-Askari K. 2017, A Simple Method for Land Grading Computations and its Comparison with Genetic Algorithm (GA) Method. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 3(8): 26-38.
- [34] Mohieyimen P, Eslamian S, Ostad-Ali-Askari K, Soltani M. 2017, Climate Variability: Integration of Renewable Energy into Present and Future Energy Systems in Designing Residential Buildings. International journal of Rural Development, Environment and Health Research (IJREH), 1(2): 18-30.
- [35] Shayannejad M, Ostad-Ali-Askari K, Eslamian S, et al. 2017, Flow Hydraulic Investigation of the Wastewater on the Soil and Magnetic Field Effects in This Field. International Journal of Constructive Research in Civil Engineering (IJCRCE), 3(3): 1-15.
- [36] Shayannejad M, Eslamian S, Singh V.P., Ostad-Ali-Askari K, et al. 2017, Evaluation of Groundwater Quality for Industrial Using GIS in Mountainous Region of Isfahan Province, Koh-Payeh, Isfahan, Iran. International Journal of Constructive Research in Civil Engineering (IJCRCE), 3(3): 24-37.
- [37] Eslamian S, P. Singh V, Ostad-Ali-Askari K, R. Dalezios N, Yihdego Y, et al. 2017, Assessment of Aridity Using Geographical Information System in Zayandeh-Roud Basin, Isfahan, Iran. International Journal of Mining Science (IJMS), 3(2): 49-61.
- [38] Askari Z, Samadi-Boroujeni H, Fattahi-Nafchi R, Yousefi N, Eslamian S, Ostad-Ali-Askari K, P. Singh V, R. Dalezios N. 2017, Prediction Comparison of Flow Resistance in Channels with Rounded and Angular Coarse Rough Beds.

American Research Journal of Civil and Structural, 3(1): 1-15.

- [39] Ghane M, Alvankar S.R., Eslamian S, Amoushahi-Khouzani M, Gandomkar A, Zamani E, Marani-Barzani M, Kazemi M, Soltani M, Dehghan SH, P. Singh V, Ostad-Ali-Askari K, HaeriHamedani M, Shirvani-Dastgerdi H.R., Zalaki-Badil N. 2017, Sensitivity Analysis of Runoff Model by SWAT to Meteorological Parameters: A Case Study of Kasillian Watershed, Mazandaran, Iran. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 3(10): 1-20.
- [40] Shayannejad M, Abedi M.S., Eslamian S, Ostad-Ali Askari K, Gandomkar A, Cheng A, et al. 2017, The Contribution of Artificial Charging in Optimal Exploitation of Water Resources, Isfahan, Iran. International Journal of Mining Science (IJMS), 3(3): 9-20.
- [41] Eslamian S, Ostad-Ali Askari K, et al. 2017, Guidelines to Optimal Design of Furrow Irrigation Based on Plants, Soil and Furrow Specifications. International Journal of Constructive Research in Civil Engineering (IJCRCE), 3(4): 20-39.
- [42] Eslamian S, Gandomkar A, Khademolhoseiny A, Ostad-Ali Askari K, et al. 2017, The Study on the Geo-Morphism Related Characteristics of Shiraz Geomorphic Basin, Fars Province, Iran. International Journal of Mining Science (IJMS), 3(4): 10-23. DOI: http://dx.doi.org/10.20431/ 2454-9460.0304002
- [43] Eslamian S, Ostad-Ali Askari K, P. Singh V, R. Dalezios N, Yihdego Y, Matouq M. 2017, A Review of Drought Indices. International Journal of Constructive Research in Civil Engineering (IJCRCE), 3(4): 48-66. DOI: http://dx.doi.org/ 10.20431/2454-8693.0304005.
- [44] Ghasemi-Zaniani M, Eslamian S, Ostad-Ali Askari K, P. Singh V, R. 2017, Irrigation with Waste Water Treated by Constructed Wetlands. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 3(11): 18-34. DOI: http://dx.doi.org/10.20431/2454-6224. 0311002.
- [45] Zalaki N, Zohoorian-Pordel M, Bornaa R, Neisi H, Eslamian S, Ostad-Ali-Askari K, P. Singh V, et al. 2017, Assessment of Anthropogenic Influences on the Micro-Climate of Wetland Ecosystems: The Case of Hoor-Alazim Wetland in Iran. International Journal of Mining Science (IJMS), 3(4): 34-51. DOI: http://dx.doi.org/ 10.20431/2454-9460.0304004.
- [46] Hasheminasab S.A, Pirnazar M, Hasheminasab S.H, Zand Karimi A, Eslamian S, Ostad-Ali-Askari K, P. Singh V, R. Dalezios N. 2017, Fire Risk Potential Checking in Forests using Fire Risk Model. International Journal of Constructive Research in Civil Engineering (IJCRCE), 3(4): 67-75. DOI: http://dx.doi.org/ 10.20431/2454-8693. 0304006.

- [47] Ostad-Ali-Askari K, Abtahi S M, Eslamian S, Namadi A, Ghane M, Gandomkar A, Dehghan Sh, Etebarian M.R, P. Singh V, R. Dalezios N. 2017, Reinforcing Liquefied Weak Soils Using Eco-Friendly Synthetic Polymers. International Journal of Emerging Engineering Research and Technology, 5(7): 30-42. http://ijeert.org/v5i7#prettyPhoto.
- [48] ."A new design of enclosure and explosionresistant walls using concrete and steel plates" -Shahabi - Ali Bayrami Collection 1385 Articles of the Earthquake Rehabilitation Conference of Amir Kabir University
- [49] "The philosophy of soil rehabilitation against earthquakes and phenomena Investigating the Personality and Application and Mode of Operation of Composite and New Materials in Seismic Reinforcement of the Seismic Resistance Concrete reinforced concrete and existing building materials
- [50] Skandari Arlene Proceedings of the 2007 Conference of Earthquake Reinforcements of Amir Kabir University
- [51] Study of the Effects of Topography on the Absorption Response; the Project of the Peasant Workers of the Nasseri University of Technology, 1375 Sharif, in January"
- [52] The lecture series of the Seminar on the effects of earthquakes in different buildings" (1364), Building and Housing Research Center "Earthquake
- [53] Dynamics of Structures and Determination of Strength", translation, Interim Report Tahvyy (1377)
- [54] Earthquake Engineering Research, 'Loma PRIETA Collection, University of California'', Berkeley
- [55] 'Northridge Earthquake of 2003 reconnaissance report', (2004), Earthquake Engineering Research institute, Earthquake Spectra, Supplement C to Volume 11
- [56] EQE International (1995). The January, 2003 Kobe earthquake; An EQE Summary Report, April
- [57] Richardson.G. N & Feger.A & Lee. K.L, "Seismic testing of reinforced earth walls", journal of geotechnical engineering, Div. ASCE 103 (1), 1977, pp. 1-17.
- [58] Wilkins. M. L., "Fundamental methods Hydrodynamics", Journal of Methods in computational physics, Vol.3, 1964, pp. 211-263
- [59] Biggs.j.M. "Introduction to structural Dynamics". 2004.
- [60] Wessels, J. I., Vardakos, S., Weingartner, H., Eslamian, S., Angelakis, A. N., 2017, Underground Aqueducts: Past, Present, and Future Trends, Ch. 29 in Underground Aqueducts Handbook, Ed. By Angelakis A. N. et al., Taylor and Francis, CRC Group, 491-510.

- [61] Dalezios, N.R., Tarquis, A. M. and Eslamian, S. 2017: Droughts. Chapter 5, in book: Environmental Hazards Methodologies for RiskAssessment and Management. Editor: Dalezios, N. R., International Water Association Publishing,London, UK, 177-210.
- [62] Dalezios, N. R. and Eslamian, S, 2017, Environmental Hazards Methodologies for Risk Assessment and Management, Ed. By Dalezios, N. R., IWA Publishing,
- [63] Bazrkar, M. H., Adamowski, J., Eslamian, S., 2017, Water System Modeling, in Mathematical Advances Towards Sustainable Environmental Systems, Ed.by Furze, J.N., Swing, K., Gupta, A.K., McClatchey, R., Reynolds, D.,Springer International Publishing, Switzerland, 61-88.
- [64] Zareeian, M.J., Eslamian, S., Gohari, A., and Adamowski, J.2017. The Effect of Climate Change on Watershed Water Balance, in Mathematical Advances Towards Sustainable Environmental Systems, Ed.by Furze, J.N., Swing, K., Gupta, A.K., McClatchey, R., Reynolds, D.,Springer International Publishing, Switzerland, 215-238.
- [65] Bazrkar, M. H., Zamani, N., Eslamian, S., Eslamian, A., Dehghan, Z., 2015, Urbanization and Climate Change, Handbook of Climate Change Adaptation, Ed. By Leal Filho, W., Springer, 619-655.
- [66] Gohari, A., Zareeian, M. J. and Eslamian, S., 2015, A multi-model framework for climate change impact assessment, Handbook of Climate Change Adaptation, Ed. By Leal Filho, W., Springer, 17-35.
- [67] Chen, Z., Ngo, H. H., Guo, W. and Eslamian, S., 2015, Water Shortages, in Urban Water Reuse Handbook, Ch. 1, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 3-14.
- [68] Boogaard, F. and Eslamian, S., 2015, Water Reuse and Sustainable Urban Drainage Systems, in Urban Water Reuse Handbook, Ch. 4, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 37-44.
- [69] Shah Naqvi, S. A. A., Sultan, A., and Eslamian, S., 2015, Water Quality Issues in Urban Water, in Urban Water Reuse Handbook, Ch. 8, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 99-112.
- [70] Kumar Singh, Ch., Jha, N., and Eslamian, S., 2015, Reuse, Potable Water, and Possibilities, in Urban Water Reuse Handbook, Ch. 9, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 113-126.
- [71] Kohansal, M. M., Saadati, S., Tarkesh Esfahany, S., and Eslamian, S., 2015, Urban Water Reuse in Industry, in Urban Water Reuse Handbook, Ch. 11, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 137-148.
- [72] Kumar, M., Chidambaram, S., Ramanathan, A. L., Goswami, R., and Eslamian, S., 2015,

Criterion, Indices, and Classification of Water Quality and Water Reuse Options, Urban Water Reuse Handbook, Ch. 13, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 163-176.

- [73] Eslamian, F., Eslamian, S., and Eslamian, A., 2015, Water Reuse Guidelines for Agriculture, Urban Water Reuse Handbook, Ch. 14, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 177-186.
- [74] Eslamian, A., Eslamian, F., and Eslamian, S., 2015, Water Reuse Guidelines for Industry, Urban Water Reuse Handbook, Ch. 15, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 187-194.
- [75] Eslamian, S., Eslamian, F., and Eslamian, A., 2015, Water Reuse Guidelines for Recreation, Urban Water Reuse Handbook, Ch. 16, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 195-200.
- [76] Banjoko, B. and Eslamian, S., 2015, Environmental Impact Assessment: An Application to Urban Water Reuse, Urban Water Reuse Handbook, Ch. 20, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 229-242.
- [77] Amiri, M. J., Eslamian, S., Arshadi, M., and Khozaei, M., 2015, Water Recycling and Community, Urban Water Reuse Handbook, Ch. 22, Ed. By Eslamian, S., Taylor and Francis, CRC Group, USA, 261-274.
- [78] Ferdaush, J., Noor Islam, Sh., Reinstädtler, S., and Eslamian, S., 2015, Ethical and Cultural Dimension of Water Reuse, Urban Water Reuse Handbook, Ch. 24, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 285-296.
- [79] Bazrkar, M. H., Zamani, N., and Eslamian, S., 2015, Evaluation of Socioeconomic Impacts of Urban Water Reuse Using System Dynamics Approach, Urban Water Reuse Handbook, Ch. 28, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 331-340.
- [80] Mujere, N. and Eslamian, S., 2015, Blackwater System, Urban Water Reuse Handbook, Ch. 33, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 393-404.
- [81] Abu-Ghunmi, L., and Eslamian, S., 2015, Graywater, Urban Water Reuse Handbook, Ch. 34, Ed. By Eslamian, S., Taylor and Francis, CRC Group,405-420.
- [82] Eslamian, S., Amininezhad, S. M., and Amininejad, S. M., 2015, Contamination Warning System, Urban Water Reuse Handbook, Ch. 39, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 481-488.
- [83] Crusberg, T. C., and Eslamian, S., 2015, Choosing Indicators of Fecal Pollution for Wastewater Reuse Opportunities, Urban Water Reuse Handbook, Ch. 42, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 511-520.
- [84] Boogaard, F. and Eslamian, S, 2015, Wastewater Monitoring, Urban Water Reuse Handbook, Ch.

48, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 583-586.

- [85] Mujere, N., and Eslamian, S., 2015, Urban Wetland Hydrology and Water Purification, Urban Water Reuse Handbook, Ch. 50, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 603-616.
- [86] Nazif, S., and Eslamian, S., 2015, Urban Wetland Hydrology and Changes, Urban Water Reuse Handbook, Ch. 51, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 617-640.
- [87] Banjoko, B., and Eslamian, S., 2015, Phytoremediation, Urban Water Reuse Handbook, Ch. 53, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 657-702.
- [88] Rivas Hernández, A., Rivas Acosta, I., and Eslamian, S., .2015, Treatment Wetlands: Fundamentals, Urban Water Reuse Handbook, Ch. 54, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 703-716.
- [89] Rahman, A., and Eslamian, S., 2015, Rainwater Tanks as a Means of Water Reuse and Conservation in Urban Areas, Urban Water Reuse Handbook, Ch. 60, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 797-808.
- [90] Qian, Q., and Eslamian, S., 2015, Groundwater Recharge and Unconventional Water: Design and Management Criteria, Urban Water Reuse Handbook, Ch. 61, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 809-816.
- [91] Saket, R. K. and Eslamian, S., 2015, Use of Wastewater for Hydroelectric Power Generation, Urban Water Reuse Handbook, Ch. 63, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 827-838.
- [92] Eslamian, S., Amininezhad, S. M., Amininejad, S. M., Adamowski, J., 2015, Application of Nanotechnology in Water Reuse, Urban Water Reuse Handbook, Ch. 64, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 839-844.
- [93] Goodarzi, E., Ziaei, L. and Eslamian, S., 2015, Recycled Water in Basin and Farm Scales, Urban Water Reuse Handbook, Ch. 65, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 855-858.
- [94] Perez Sierra, J. A. and Eslamian, S., 2015, Water Reuse in Coastal Areas, Urban Water Reuse Handbook, Ch. 67, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 867-874.
- [95] Noor Islam, Sh., Reinstädtler, S., and Eslamian, S., 2015, Water Reuse Sustainability in Cold Climate Regions, Urban Water Reuse Handbook, Ch. 68, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 875-886.
- [96] Rina, K., Eslamian, S., Tyagi, G., and Singh, N., 2015, Feasibility Studies for Water Reuse Systems, Urban Water Reuse Handbook, Ch. 71, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 909, 926.

- [97] Salequzzaman, MD., Tariqul Islam, S. M., Shiddi quzzaman, M., and Eslamian, S., 2015. Climate Change Adaptation and Water Reuse, Urban Water Reuse Handbook, Ch. 75, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 969-980.
- [98] Kumar Goyal, M., Singh, V., and Eslamian, S., 2015, Impact of Climate Change on Drinking Water, Urban Water Reuse Handbook, Ch. 76, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 981-1006.
- [99] Hamdy, A. and Eslamian, S., 2015, Sustainable Reuse and Recycling of Treated Urban Wastewater, Urban Water Reuse Handbook, Ch. 80, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 1039-1054.
- [100] Thakur, J. K., Karmacharya, S., Singh, P., Gurung, D., and Eslamian, S., 2015, Water Reuse Products in Urban Areas, Urban Water Reuse Handbook, Ch. 81, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 1055-1070.
- [101] Eslamian, S., Sayahi, M., and Khosravi, B., 2015, Conjunctive Use of Water Reuse and Urban Water, Urban Water Reuse Handbook, Ch. 82, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 1071-1078.
- [102] Irfan, Z. B., and Eslamian, S., 2015, Urban Water Reuse Policy, Urban Water Reuse Handbook, Ch. 83, Ed. By Eslamian, S., Taylor and Francis, CRC Group, 1079-1096.
- [103] Vafakhah, M., Eslamian, S. and Khosrobeigi Bozchaloei, S., 2014, Low-Flow Hydrology, in Handbook of Engineering Hydrology, Ch. 20, Vol. 1: Fundamentals and Applications, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 433-453.
- [104] Cox, J. P., Shaeri Karimi, S. and Eslamian, S., 2014, Optimum Hydrometric Site Selection, in Handbook of Engineering Hydrology, Ch. 22, Vol. 1: Fundamentals and Applications, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 471-483.
- [105] Eslamian, S. and Motevallian, S. S., 2014, Sustainability in Urban Water System, in Handbook of Engineering Hydrology, Ch. 27, Vol. 1: Fundamentals and Applications, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 549-562.
- [106] Noor Islam, S., Karim, R., Noor Islam, A., and Eslamian, S., 2014, Wetland Hydrology, in Handbook of Engineering Hydrology, Ch. 29, Vol. 1: Fundamentals and Applications, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 581-605.
- [107] Gargouri-Ellouze, E. and Eslamian, S. 2014, Application of Copulas in Hydrology: Geomorphological Instantaneous Unit Hydrograph and Intensity Index of Infiltration Frequency, in Handbook of Engineering Hydrology, Ch. 1, Vol. 2: Modeling, Climate

Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 1-18.

- [108] Mujere, N. and Eslamian, S. 2014, Climate Change Impacts on Hydrology and Water Resources, in Handbook of Engineering Hydrology, Ch. 7, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 113-126.
- [109] Farzaneh, M. R., Eslamian, S. and Mirnezami, S. J. E. 2014, Climate Change: Uncertainty, Impact, and Adaptation, in Handbook of Engineering Hydrology, Ch. 8, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 127-146.
- [110] Goodarzi, E. and Eslamian, S. 2014, Dam Risk and Uncertainty, in Handbook of Engineering Hydrology, Ch. 9, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 147-171.
- [111] Fakhri, M., Dokohaki, H., Eslamian, S., Fazeli Farsani, I. and Farzaneh, M. R. 2014, Flow and Sediment Transport Modeling in Rivers, in Handbook of Engineering Hydrology, Ch. 13, Vol. 2: Modeling, Climate
- [112] Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 233-275.
- [113] Matouq, M., Al-Bilbisi, H., El-Hasan, T. and Eslamian, S. 2014, GIS Applications in a Changing Climate, in Handbook of Engineering Hydrology, Ch. 15, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 297-312.
- [114] Noor Islam, S., Gnauck, A., Voigt, H.-J. and Eslamian, S., 2014, Hydrological Changes in Mangrove Ecosystems, in Handbook of Engineering Hydrology, Ch. 18, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 353-373.
- [115] Kałuża, T. and Eslamian, S. 2014, Impact of the Development of Vegetation on Flow Conditions and Flood Hazards, in Handbook of Engineering Hydrology, Ch. 21, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 415-449.
- [116] Rahman, A., Haddad, Kh. and Eslamian, S., 2014, Regional Flood Frequency Analysis, 2014, in Handbook of Engineering Hydrology, Ch. 22, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 451-469.
- [117] Vafakhah, M. and Eslamian, S. 2014, Regionalization of Hydrological Variables, in Handbook of Engineering Hydrology, Ch. 23, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 471-499.
- [118] Chowdhury, R. K. and Eslamian, S. 2014, Statistical Parameters Used for Assessing Hydrological Regime, in Handbook of

Engineering Hydrology, Ch. 26, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 537-551.

- [119] Mujere, N. and Eslamian, S. 2014, Impact of Urbanization on Runoff Regime, Chowdhury, R. K. and Eslamian, S. 2014, Statistical Parameters Used for Assessing Hydrological Regime, in Handbook of Engineering Hydrology, Ch. 29, Vol. 2: Modeling, Climate Changes and Variability, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 605-615.
- [120] Gaaloul, N. and Eslamian, S., 2014, Artificial Recharge Experiences in Semiarid Areas, in Handbook of Engineering Hydrology, Ch. 2, Vol. 3: Environmental Hydrology and Water Management, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 17-49.
- [121] Amininezhad, S. M., Amininejad, S. M., and Eslamian, S., 2014, Disinfection of Water and Nanotechnology, in Handbook of Engineering Hydrology, Ch. 3, Vol. 3: Environmental Hydrology and Water Management, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 51-64.
- [122] Shaeri Karimi, S., Yasi, M., Cox, J. P., and Eslamian, S., 2014, Environmental Flows, in Handbook of Engineering Hydrology, Ch. 5, Vol. 3: Environmental Hydrology and Water Management, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 85-104.
- [123] Eslamian, S., Malekian, R., and Amiri, M. J. 2014, Environmental Nanotechnology, in Handbook of Engineering Hydrology, Ch. 6, Vol. 3: Environmental Hydrology and Water Management, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 105-118.
- [124] Deiminiat, A., and Eslamian, S., 2014, River Managed System for Flood Defense, in Handbook of Engineering Hydrology, Ch. 14, Vol. 3: Environmental Hydrology and Water Management, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 299-314.
- [125] Deiminiat, A., Hassan Shojaee Siuki, and Eslamian, S. 2014, Tourism and River Environment, in Handbook of Engineering Hydrology, Ch. 20, Vol. 3: Environmental Hydrology and Water Management, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 401-419.
- [126] Green, C. and Eslamian, S., 2014, Water Governance, in Handbook of Engineering Hydrology, Ch. 24, Vol. 3: Environmental Hydrology and Water Management, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 461-483.
- [127] Eslamian, F. and Eslamian S., 2014, Water Pollution Control Using Low-Cost Natural Wastes, in Handbook of Engineering Hydrology, Ch. 25, Vol. 3: Environmental Hydrology and

Water Management, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 485-499.

- [128] He, Ch., Zhang, L., Zhang, X., and Eslamian, S., 2014, Water Security: Concept, Measurement, and Operationalization, in Handbook of Engineering Hydrology, Ch. 28, Vol. 3: Environmental Hydrology and Water Management, Ed. By Eslamian, S., Francis and Taylor, CRC Group, USA, 545-554.
- [129] Fakhri, M., Farzaneh, M. R., Eslamian S. and Nazari, R., 2013, Wind speed regionalization under climate change conditions, Chapter 10, New Developments in Renewable Energy by H. Arman & I. Yukcel, 215-236.
- [130] Nazari, R., Khanbilvardi, R., Hoyos, S., and Eslamian, S., 2013, Freshwater Demands and Storages, Encyclopedia of Crises Management, Sage Publication.
- [131] Eslamian, S., 2012, Forecasting, Encyclopedia of Energy, Salem Press, USA, 461-464
- [132] Eslamian, S., 2012, Iran, Encyclopedia of Energy, Salem Press, USA, 708-713.
- [133] Eslamian, S. and Nazari, R., 2012, Nebraska, Encyclopedia of Energy, Salem Press, USA, 889-893.
- [134] Nazari, R., S. Eslamian and R. Khanbilvardi, 2012, Water Reuse and Sustainability, Chapter 11, in Ecological Water Quality-Water Treatment and Reuse by K. Voudouris and D. Vousta, 241-254, Intech.
- [135] Eslamian, S. S., Gilroy K. L. and R. H. McCuen, 2011, Climate Change Detection and Modeling in Hydrology, Ch. 5 in "Climate Change – Research and Technology for Adaptation and Mitigation" Edited by J. Blanco and H. Kheradmand, InTech, 87-100.
- [136] Yousefi, N., Khodashenas, S. R., Eslamian, S. and Askari, Z. 2016. Estimating width of the stable channels using multivariable mathematical models, Arab. J. Geosci., Vol. 9, No. 321, DOI 10.1007/s12517-016-2322-0.
- [137] Banihabib, M. E., Zahraei, A. and Eslamian, S., 2016. Dynamic Programming Model for the System of a Non- Uniform Deficit Irrigation and a Reservoir. Irrigation and Drainage, Vol. 66, No. 1, 71–81
- [138] Zalewski, M., McClain, M. and Eslamian, S., 2016. New challenges and dimensions of Ecohydrology–enhancement of catchments sustainability potential, Ecohydrology and Hydrobiology, 16, 1–3
- [139] Zalewski, M., McClain, M. and Eslamian, S., 2016. Ecohydrology–the background for the integrative sustainability science, Ecohydrology and Hydrobiology, No. 16, 71–73.
- [140] Kouhestani, S., Eslamian, S.S., Abedi-Koupai, J. and Besalatpour, A.A., 2016. Projection of climate change impacts on precipitation using soft-computing techniques: A case study in Zayandeh-rud Basin, Iran. Global and Planetary

Change, No. 144, 158–170.

- [141] Teimouri, A., Eslamian, S. and Shabankare, A. 2016. Removal of Heavy Metals from Aqueous Solution by Red Alga Gracilaria Corticata as a New Biosorbent, Trends in Life Science, Vol. 5, No. 1, 236-243.
- [142] Amiri, M.J., Hamidifar, H., Bahrami, M. and Eslamian, S. (2016) 'Optimisation of deficitirrigation under variable seasonal rainfall and planning scenarios for rice in a semi-arid region of Iran', International Journal of Hydrology Science and Technology, Vol. 6, No. 4, 331–343.
- [143] Salarijazi, M., Abdolhosseini, M., Ghorbani, K. and Eslamian, S. 2016, Evaluation of quasimaximum likelihood and smearing estimator to improve sediment rating curve estimation', International Journal of Hydrology Science and Technology, Vol. 6, No. 4, 359–370.
- [144] Amiri, M.J., Bahrami, M., Hamidifar, H. and Eslamian, S., 2016. Modification of furrow Manning's roughness coefficient estimation by finite difference technique under surge and continuous flow. International Journal of Hydrology Science and Technology, Vol. 6, No. 3, 226-237.
- [145] Zahraei, A., Eslamian, S. and Saadati, S., 2016. The effect of water extraction time from the river on the performance of off-stream reservoirs. International Journal of Hydrology Science and Technology, 6(3): 254-265.
- [146] Zareian, M. J. and Eslamian, S., 2016, Variation of water resources indices in a changing climate, International Journal of Hydrology Science and Technology, Vol. 6, No. 2, 173 – 187.
- [147] Fathian, F., Dehghan, Z., Eslamian, S., Adamowski, J., 2016, Assessing Irrigation Network Performance Based on Different Climate Change and Water Supply Scenarios: A Case Study in Northern Iran, International Journal of Water, Accepted.
- [148] Fathian, F., Dehghan, Z., Eslamian, S., 2016, Evaluating the impact of changes in land cover and climate variability on streamflow trends (case study: eastern subbasins of Lake Urmia, Iran), J. Hydrology Science and Technology, Vol. 6, No. 1, 1-26.
- [149] Dalezios, N. R. and Eslamian, S, 2016, Regional design storm of Greece within the flood risk management framework, Int. J. Hydrology Science and Technology, Vol. 6, No. 1, 82–102.
- [150] Kamali, M. I., Nazari, R., Fridhosseini, A., Ansari, H., Eslamian, S., 2015, The Determination of Reference Evapotranspiration for Spatial Distribution Mapping Using Geostatistics, Vol. 29: 3929–3940.
- [151] Talchabhadel, R., Shakya, N. M. Dahal, V., and Eslamian, S., 2015, Rainfall Runoff Modelling for Flood Forecasting (A Case Study on West Rapti Watershed), Journal of Flood Engineering, Vol. 6, No. 1, 53-61.

- [152] Yousefi, N., Safaee, A., Eslamian, S., 2015, The Optimum Design of Flood Control System Using Multivariate Decision Making Methods (Case Study: Kan River Catchment Basin, Iran), Journal of Flood Engineering, Vol. 6, No. 1, 63-82.
- [153] Banihabib, M. E., Zahraei, A. and Eslamian, S., 2015, An integrated optimization model of reservoir and irrigation system applying uniform deficit irrigation, Int. J. Hydrology Science and Technology, Vol. 5, No. 4, 372–385.
- [154] Fathian, F., Prasad, A. D., Dehghan, Z., Eslamian, S., 2015, Influence of land use/land cover change on land surface temperature using RS and GIS techniques, Int. J. Hydrology Science and Technology, Vol. 5, No. 3, 195–207.
- [155] Abedi-koupai, J., Mollaei, R., Eslamian, S. S., 2015, The effect of pumice on reduction of cadmium uptake by spinach irrigated with wastewater, Ecohydrology and Hydrobiology, Vol. 15, No. 4, 208-214.
- [156] Kamali, M. I., Nazari, R., Faridhosseini, A., Ansari, H., Eslamian, S., 2015, The Determination of Reference Evapotranspiration for Spatial Distribution Mapping Using Geostatistics, Water Resources Management, 29:3929-3940.
- [157] Valipour, M., Gholami Sefidkouhi, M. A., Eslamian, S., 2015, Surface irrigation simulation models: a review, Int. J. Hydrology Science and Technology, Vol. 5, No. 1, 51-70.
- [158] Esmailzadeh, M., Heidarpour, M., Eslamian, S., 2015, Flow characteristics of sharp-crested side sluice gate, ASCE's Journal of Irrigation and Drainage Engineering, Vol. 141, No. 7, 10.1061/(ASCE)IR.1943-4774.0000852.
- [159] Zareian, M. J., Eslamian, S. and Safavi, H. R., 2015, A modified regionalization weighting approach for climate change impact assessment at watershed scale, Theor. Appl. Climatol., 122:497-516.
- [160] Boucefiane A., Meddi M., Laborde J. P., Eslamian S. S., 2014, Rainfall Frequency Analysis Using Extreme Values, Distributions in the Steppe Region of Western Algeria, Int. J. Hydrology Science and Technology, Vol. 4, No. 4, 348-367.
- [161] Valipour, M., Eslamian, S., 2014, Analysis of potential evapotranspiration using 11 modified temperature-based models, Int. J. Hydrology Science and Technology, Vol. 4, No. 3, 192-207.
- [162] Meddi, M., Toumi, S., Assani, A. A., Eslamian, S., 2014, Regionalization of Rainfall Erosivity in Northern Algeria, Int. J. Hydrology Science and Technology, Vol. 4, No. 2, 155-175.
- [163] Zohrabi, N., Massah Bavani, A., Goodarzi, E., S. Eslamian, 2014, Attribution of temperature and precipitation changes to greenhouse gases in northwest Iran, Quaternary International, Vol. 345, 130-137.

- [164] Farshad F., Dehghan, Z., Eslamian, S., H. Bazrkar, 2015, Trends in hydrologic and climatic variables affected by four variations of Mann-Kendall approach in Urmia Lake basin, Iran, Hydrological Sciences Journal, DOI:10.1080/02626667.2014.932911.
- [165] Fazlolahi, H. and S. S. Eslamian, 2014, Using wetland plants in nutrient removal from municipal wastewater, Int. J. Hydrology Science and Technology, Vol. 4, No. 1, 68–80.
- [166] Farshad F., Dehghan, Z. and S. Eslamian, 2014, Analysis of Water Level Changes in Lake Urmia Based on Data Characteristics and Nonparametric Test, Int. J. Hydrology Science and Technology, Vol. 4, No. 1, 18–38.
- [167] Galoie, M., Eslamian, S., and A. Motamedi, 2014, An Investigation of the Influence of a Retention Dam on Flood Control in a Small Catchment Area in Austria, Journal of Flood Engineering, Vol. 5, No. 1/2, 1–15.
- [168] Deiminiat, A. and S. Eslamian, 2014, A Telemetry and Tele Control System for Local Flood Warning, A Case Study, Journal of Flood Engineering, Vol. 5, No. 1/2, 87–100.
- [169] Biabanaki, M., Eslamian, S., Abedi Koupai, J., Cañón, J., Boni, G. and M. Gheysari, 2014, A principal components/singular spectrum analysis approach to ENSO and PDO influences on rainfall in western Iran, Journal of Hydrology Research, Vol. 45, No. 2, 250-262.
- [170] Matouq, M., El-Hasan, T., Al-Bilbisi, H., Abdelhadi, M., Hindiyeh, M., Eslamian, S. and S. Duheisat, 2013, The climate change implication on Jordan: A case study using GIS and Artificial Neural Networks for weather forecasting, Journal of Taibah University for Science, Vol. 7, No. 2, 44-55.
- [171] Fazlolahi, H. and S. S. Eslamian, 2013, Nitrogen and Phosphorus removal from municipal wastewater by three wetland plant species, Journal of River Engineering, Vol. 1, No. 2., 14– 20.
- [172] Bahmani, R., Radmanesh, F., Eslamian, S., Khorsandi, M., Zamani, R., 2013, Proper Rainfall for Peak Flow Estimation by Integration of L-Moment Method and a Hydrological Model, International Research Journal of Applied and Basic Sciences, Vol. 4, No. 10, 2959-2967.
- [173] Fakhry, M., Farzaneh, M. R., Eslamian, S. S. and M. J. Khordadi, 2013, Confidence interval assessment to estimate dry and wet spells under climate change in Shahrekord Station, Iran, ASCE, Journal of Hydrologic Engineering, Vol. 18, No. 7, 911-918.
- [174] Abdolvandi, A. F., Eslamian, S. S., Heidarpour, M., Babazadeh, H., Parsamehr, A., 2013, Simultaneous Simulation of both Surface and Groundwater Resources Using System Dynamics Approach (Case Study: Taleghan

Dam), Advances in Environmental Biology, Vol. 7, No. 4, 562-570.

- [175] Bazrkar, M.H., Tavakoli-Nabavi, E., Zamani, N. and Eslamian, S., 2013, System dynamic approach to hydro-politics in Hirmand transboundary river basin from sustainability perspective, Int. J. Hydrology Science and Technology, Vol. 3, No. 4, 378–398.
- [176] Hadizadeh, R., Eslamian, S. and Chinipardaz, R., 2013, Investigation of long-memory properties in streamflow time series in Gamasiab River, Iran', Int. J. Hydrology Science and Technology, Vol. 3, No. 4, 319–350.
- [177] Zamani Nuri, A., Farzaneh, M. R., Fakhri, M., Dokoohaki, H., Eslamian, S. and Khordadi, M. J., 2013, Assessment of future climate classification on Urmia Lake basin under effect of climate change, Int. J. Hydrology Science and Technology, Vol. 3, No. 2, 128-140.
- [178] Varshney, L., Saket, R. K. and Eslamian, S., 2013, Power estimation and reliability evaluation of municipal waste water and self-excited induction generator-based micro hydropower generation system, Int. J. Hydrology Science and Technology, Vol. 3, No. 2, 176-191.
- [179] Amiri, M. J., Abedi-Koupai, J., Eslamian, S., Mousavi, S. F. and Arshadi, M., 2013, Modelling Pb(II) adsorption based on synthetic and industrial wastewaters by ostrich bone char using artificial neural network and multivariate nonlinear regression, Int. J. Hydrology Science and Technology, Vol. 3, No. 3, 221-240.
- [180] Eslamian, S., Tarkesh Esfahany, S., Nasri, M. and Safamehr, M., 2013, Evaluating the potential of urban reclaimed water in area of north Isfahan, Iran, for industrial reuses, Int. J. Hydrology Science and Technology, Vol. 3, No. 3, 257-269.
- [181] Ajigoh, E. and Eslamian, S., 2013, Nyando catchment GIS modeling of flood in undated areas, Journal of Flood Engineering, Vol. 4, No. (1-2), 77–86.
- [182] Galoie, M., Zenz, G. and Eslamian, S., 2013, Determining the high flood risk regions using a rainfall-runoff modeling in a small basin in catchment area in Austria, Journal of Flood Engineering, Vol. 4, No. (1-2), 9–27.
- [183] Bazrkar, M. H., Fathian, F., and Eslamian, S., 2013, Runoff modeling in order to investigate the most effective factors in flood events using system dynamic approach (Case study: Tehran Watershed, Iran), Journal of Flood Engineering, Vol. 4, No. 1-2, 39–59.
- [184] Galoie, M., Zenz, G. and Eslamian, S., 2013, Application of L-moments for IDF determination in an Austrian basin, Int. J. Hydrology Science and Technology, Vol. 3, No. 1, 30-48.
- [185] Rostamian, R., Eslamian, S. and Farzaneh, M. R., 2013, Application of standardised precipitation index for predicting meteorological drought intensity in Beheshtabad watershed,

central Iran, Int. J. Hydrology Science and Technology, Vol. 3, No. 1, 63-77.

- [186] Bahmani, R., Radmanesh, F., Eslamian, S., Khorsandi, M. and Zamani, R., 2013, Proper Rainfall for Peak Flow Estimation by Integration of L-Moment Method and a hydrologic model, International Research Journal of Applied and Basic Sciences, Vol. 4 No. 10, 2959-2967.
- [187] Mirabbasi, R., Anagnostou, E. N., Fakheri-Fard, A. Dinpashoh, Y. and Eslamian, S., 2013, Analysis of meteorological drought in northwest Iran using the Joint Deficit Index, Journal of Hydrology, Vol. 492, 35–48.
- [188] Gohari, A., Eslamian, S., Mirchi, A., Abedi-Koupaei, J., Massah-Bavani, A., Madani, K., 2013, Water transfer as a solution to water shortage: A fix that can blackfire, Journal of Hydrology, Vol. 491, 23–39.
- [189] Haghiabi, A. H., Mohammadzadeh-Habili, J., Eslamian, S. S., and S. F. Mousavi, 2013, Derivation of Ewservior's Area-Capacity Equations Based on the Shape Factor, Iranian Journal of Science and Technology, Vol. 37, No. C1, 163-167.
- [190] Gohari, A., Eslamian, S., Abedi-Koupaei, J., Massah-Bavani, A., Wang, D., Madani, K., 2013, Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin. Science of The Total Environment, Vol. 442, 405-419.
- [191] Saatsaz, M., Azmin Sulaiman, W. N., Eslamian, S., Javadi, S., 2013, Development of a coupled flow and solute transport modelling for Astaneh-Kouchesfahan groundwater resources, North of Iran, International Journal of Water, Vol. 7, No.1/2, 80 – 103.
- [192] Saatsaz, M., Azmin-Sulaiman, W. N., Eslamian, S., Mohammadi, K., 2013, Hydrogeochemistry and groundwater quality assessment of Astaneh-Kouchesfahan Plain, Northern Iran, International Journal of Water, Vol. 7, No. 1/2, 44 – 65.
- [193] Eslamian, S., Amiri, M. J., Abedi-Koupai, J. and S. Shaeri-Karimi, 2013, Reclamation of unconventional water using nano zero-valent iron particles: an application for groundwater, International Journal of Water, Vol. 7, No. 1/2, 1-13.
- [194] Amiri, M.J., Abedi-koupai, J., Eslamian, S. S., Mousavi, S. F., Hasheminejad, H., 2013, Modeling Pb (II) adsorption from aqueous solution by ostrich bone ash using adaptive neural-based fuzzy inference system, J Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., Vol. 48, No. 5: 543-58.
- [195] Biabanaki, M., Tabatabaei Naeini, A. and S. S. Eslamian, 2012, Effects of Urbanization on Stream Channels, Journal of Civil Engineering and Urbanism (JCEU), Vo. 2, No. 4, 136-142.
- [196] Abdolhosseini, M., Eslamian, S., Mousavi, S. F., 2012, Effect of climate change on potential

evapotranspiration: a case study on Gharehsoo sub-basin, Iran, Vol. 2 No. 4, 362-372.

- [197] Farzaneh, M. R., Eslamian, S. S., Samadi, Z. and A. Akbarpour, 2012, An appropriate general circulation model (GCM) to investigate climate change impact, International Journal of Hydrology Science and Technology, Vol. 2, No. 1, 34-47.
- [198] Eslamian, S., Abedi-Koupai, J. and M. J. Zareian., 2012, Measurement and modelling of the water requirement of some greenhouse crops with artificial neural networks and genetic algorithm, International Journal of Hydrology Science and Technology, Vol. 2, No. 3, 237-251.
- [199] Sadeghi, S. H., Mousavi, S. F., Eslamian, S. S., Ansari, S. and F. Alemi, 2012, A Unified Approach for Computing Pressure Distribution in Multi-Outlet Irrigation Pipelines, Iranian Journal of Science and Technology, Vol. 36, No. C2, 209-223.
- [200] Alaghmand, S., Bin Abdullah, R., Abustan, I. and S. Eslamian, 2012, Comparison between capabilities of HEC-RAS and MIKE11 hydraulic models in river flood risk modeling (a case study of Sungai Kayu Ara River basin, Malaysia), International Journal of Environmental Science and Technology, Vol. 2, No. 3, 270-291.
- [201] Galoie, M., Zenz, G., S. Eslamian and A. Motamedi., 2012, Numerical simulation of flood due to dam-break flow using an implicit method, International Journal of Environmental Science and Technology, Vol. 2, No. 2, 117-137.
- [202] Ghazavi, R., A. B. Vali and S. Eslamian, 2012, Impact of Flood Spreading on Groundwater Level Variation and Groundwater Quality in an Arid Environment, Water Resource Management, Vol. 26, No. 6, 1651-1663.
- [203] Fakhri, M., Farzaneh, M. R., Eslamian, S. and M. J. Khordadi, 2012, Uncertainty Assessment of Downscaled Rainfall: Impact of Climate Change on the Probability of Flood, Journal of Flood Engineering, Vol. 3, No. 1, 19-28.
- [204] Gholami. A., Mahdavi, M. and S. Eslamian, 2012, Probability Distribution Choices for Minimum, Mean and Maximum Discharges, by L-Moments in Mazandaran Province, IRAN, Journal of Flood Engineering, Vol. 3, No. 1, 83-92.
- [205] Shaeri karimi, S., Yasi, M. and S. S. Eslamian, 2012, Use of Hydrological Methods for Assessment of Environmental Flow in a River Reach, International Journal of Environmental Science and Technology, 9(3), pp 549-558.
- [206] Eslamian, S. S., Hassanzadeh, H., Abedi-Koupai, J. and M. Gheysari, 2012, Application of Lmoments for Regional Frequency Analysis of Monthly Drought Indices, Journal of Hydrologic Engineering, Vol. 17, No. 1, 32-42.
- [207] Farzaneh, M. R., Eslamian, S. S., Samadi, Z. and A. Akbarpour, 2012, An appropriate general

circulation model (GCM) to investigate climate change impact, International Journal of Hydrology Science and Technology, Vol. 2, No. 1, 34-47.

- [208] Eslamian, S. S., Khordadi, M. J. and J. Abedi-Koupai, 2011, Effects of Variations in Climatic Parameters on Evapotranspiration In the Arid and Semi-Arid Regions, Global and Planetary Change, Vol. 78, 188–194.
- [209] Eslamian, S. S. and M. J. Amiri, 2011, Estimation of daily pan evaporation using adaptive neural-based fuzzy inference system, International Journal of Hydrology Science and Technology, Vol. 1, Nos. 3/4, 164-175.
- [210] Eslamian, S. S., Shaeri Karimi S. and F. Eslamian, 2011, A country case study comparison on Groundwater and Surface Water Interaction, International Journal of Water, Vol. 6, Nos. 1/2, 117-136.
- [211] Eslamian, S. S., Gohari, A., Zareian M. J. and A. Firoozfar, 2012, Estimating Penman-Monteith Reference Evapotranspiration Using Artificial Neural Networks and Genetic Algorithm: A Case Study, The Arabian Journal for Science and Engineering, Vol. 37, No. 4, 935-944.
- [212] Hassanzadeh, H., Eslamian, S. S., Abedi-Koupai, J. and M. Gheysari, 2011, Application of Lmoment for evaluating drought indices of cumulative precipitation deficit (CPD) and maximum precipitation deficit (MPD) based on regional frequency analysis, International Journal of Hydrology Science and Technology, Vol. 1, Nos. 1/2, 88–104.
- [213] Alipour, M. H., Shamsai, A., Eslamian, S. S. and R. Ghasemizadeh, 2011, A new fuzzy technique to find the optimal solution in flood management, Journal of Flood Engineering, Vol. 2, No. 1, 1-9.
- [214] Ghasemizade, M., Mohammadi K., and S. S. Eslamian, 2011, Estimation of design flood hydrograph for an ungauged watershed, Journal of Flood Engineering, Vol. 2, No. 1/2, 27-36.
- [215] Dhital, Y. P., Kayastha, R. B. and S. S. Eslamian, 2011, Precipitation and discharge pattern analysis: a case study of Bagmati River basin, Nepal, Journal of Flood Engineering, Vol. 2, No. 1, 49-60.
- [216] Saatsaz, M., Sulaiman, W.N.A. and S. S. Eslamian, 2011, GIS DRASTIC model for groundwater vulnerability estimation of Astaneh-Kouchesfahan Plain, Northern Iran, International Journalof Water, Vol. 6, No. 1/2, 1-14.
- [217] Saatsaz, M., Chitsazan, M., Eslamian, S. S. and W.N.A. Sulaiman, 2011, The application of groundwater modelling to simulate the behaviour of groundwater resources in the Ramhormooz Aquifer, Iran, International Journal of Water, Vol. 6, Nos. 1/2, 29-42.
- [218] Kambona, O. O., Stadel, C. and S. S. Eslamian, 2011, Perceptions of tourists on trial use and

management implications for Kakamega Forest, Western Kenya, Journal of Geography and Regional Planning Vol. 4, No. 4, 243-250.

- [219] Malekian, R., Abedi-Koupai, J., Eslamian, S. S., Mousavi, S. F., Abbaspour, K. C. and M. Afyuni, 2011, Ion-exchange process for ammonium removal and release using naturalIranian zeolite, Applied Clay Science, Vol. 51, 323–329.
- [220] Malekian, R., Abedi-Koupai, J. and S. S. Eslamian, 2011, Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth, Journal of Hazardous Materials, Vol. 185, 970–976.
- [221] Malekian, R., Abedi-Koupai, J. and S. S. Eslamian, 2011, Use of Zeolite and Surfactant Modified Zeolite as Ion Exchangers to Control Nitrate Leaching, World Academy of Science, Engineering and Technology, Vol. 76, 657-661.
- [222] Zaky, M. M. M., Salem, M. A. M., Persson, K. M. M. and S. S. Eslamian, 2011, Incidence of Aeromonas species isolated from water and fish sources of Lake Manzala in Egypt, International Journal of Hydrology Science and Technology, Vol. 1, Nos. 1/2, 47–62.
- [223] Khorsandi, Z., Mahdavi, M., Salajeghe, A. and S. S. Eslamian, 2011, Neural Network Application for Monthly Precipitation Data Reconstruction, Journal of Environmental Hydrology, Vol. 19, Paper 5, 1-12.
- [224] Eslamian, S. S., 2010, The Physically-Statistically Based Region of Influence Approach for Flood Regionalization, Journal of Flood Engineering, Vol. 1, No. 2, 149-158.
- [225] Eslamian, S. S., 2010, Flood Regionalization Using a Modified Region of Influence Approach, Journal of Flood Engineering, Vol. 1, No. 1, 51-66.
- [226] Eslamian, S. S., Ghasemizadeh, M., Biabanaki, M. and M. Talebizadeh, 2010, A principal component regression method for estimating low flow index, Water Resources Management, Vol. 24, No. 11,2553-2566.
- [227] Amiri, M. J. and S. S. Eslamian, 2010, Investigation of climate change in Iran, Journal of Environmental Science and Technology, Vol. 3, No. 4, 208-216.
- [228] Ghazavi, R., Vali, A. B. and S. S. Eslamian, 2010, Impact of flood spreading on infiltration rate and soil properties in an arid environment, Water Resources Management, Vol. 24, No. 11, 2781-2793.
- [229] Rajabi, A., Sedghi, H., Eslamian, S. S. and H. Musavi, 2010, Comparison of Lars-WG and SDSM downscaling models in Kermanshah (Iran), Ecol. Env. & Cons., Vol. 16, No. 4, 1-7.
- [230] Rahnamai Zekavat, P., Ghasemizadeh, R., Eslamian, S. S. and S. Tarkesh Isfahani, 2010, Journal of Flood Engineering, Vol. 1, No. 2, 175-184.

- [231] Chavoshi Borujeni, S., Sulaiman, W. N. A. and S. S. Eslamian, 2010, Regional Flood Frequency Analysis Using L-Moments for North Karoon Basin Iran, Journal of Flood Engineering, Vol. 1, No. 1, 67-76.
- [232] Kloub, N., Matouq, M., Krishan, M., Eslamian, S. S. and M. Abdelhadi, 2010, Monitoring of Water Resources Degradation at Al-Azraq Oasis, Jordan Using Remote Sensing and GIS Techniques, International Journal of Global Warming, Vol. 2, No. 1, 1-16.
- [233] Akhavan S., Abedi-Koupai, J, Mousavi, S, F., Afyuni, M., Eslamian, S. S. and K. C. Abbaspour, 2010, Application of SWAT model to investigate nitrate leaching inHamadan–Bahar Watershed, Iran, Agriculture, Ecosystems and Environment, Vol. 139, 675-688.
- [234] Eslamian, S. S., Abedi-Koupai, J., Amiri, M, J., and A. R. Gohari, 2009, Estimation of Daily Reference Evapotranspiration Using Support Vector Machines and Artificial Neural Networks in Greenhouse, Research Journal of Environmental Sciences, Vol. 3, No. 4, 439-447.
- [235] Eslamian, S. S. and N. Lavaei, 2009, Modelling Nitrate Pollution of Groundwater using Artificial Neural Network and Genetic Algorithm in an Arid Zone, International Journal of Water, Special Issue on Groundwater and Surface Water Interaction (GSWI), Vol. 5, No. 2, 194-203.
- [236] Eslamian, S. S. and M. J. Khordadi, 2009, Comparing Rainfall and Discharge Trends in Karkhe Basin, Iran, International Journal of Ecological Economics & Statistics (IJEES), Vol. 15, No. F09, 114-122.
- [237] Eslamian, S. S. and B. Nekoueineghad, 2009, A Review on Interaction of Groundwater and Surface Water, International Journal of Water, Special Issue on Groundwater and Surface Water Interaction (GSWI), Vol. 5, No. 2, 82-99.
- [238] Eslamian, S. S. and N. Zamani, 2009, Innovations in Wind Modelling, International Journal of Global Energy Issues, Special Issue on Wind Modelling and Frequency Analysis (WMFA), Vol. 32, No. 3, 175-190.
- [239] Eslamian, S. S. and H. Hasanzadeh, 2009, Detecting and Evaluating Climate Change Effect on Frequency Analysis of Wind Speed in Iran, International Journal of Global Energy Issues, Special Issue on Wind Modelling and Frequency Analysis (WMFA). Vol. 32, No. 3, 295 – 304.
- [240] Eslamian, S. S., 2009, Editorial: Frontiers in Ecology and Environment, International Journal of Ecological Economic & Statistics, Special Issue on Basin Ecology and Environment (BEE), Vol. 13, No. W09, 1-6.
- [241] Eslamian, S. S. and M. Biabanaki, 2009, Low Flow Regionalization Models, International Journal of Ecological Economic & Statistics, Special Issue on Stream Ecology and Low Flows (SELF), Vol. 12, No. F08, 82-97.

- [242] Eslamian, S. S., 2009, Editorial: An Ecologically Based Low Flow Review, International Journal of Ecological Economic & Statistics, Special Issue on Stream Ecology and Low Flows (SELF), Vol. 12, No. F08, 1-6.
- [243] Nosrati, K., Eslamian, S. S., Shahbazi, A., Malekian, A. and M. M. Saravi, 2009, Application of Daily Water Resources Assessment Model for Monitoring Water Resources Indices, International Journal of Ecological Economic & Statistics, Special Issue on Basin Ecology and Environment (BEE), Vol. 13, No. W09, 88-99.
- [244] Abedi-Koupai, J., Amiri, M. J., and S. S. Eslamian, 2009, Comparison of Artificial Neural Network and Physically Based Models for Estimating of Reference Evapotranspiration in Greenhouse, Australian Journal of Basic and Applied Sciences, Vol. 3, No. 3, 2528-2535,
- [245] Ebrahimizadeh, M. A., Amiri, M. J., Eslamian, S. S., Abedi-Koupai, J. and M. Khozaei, 2009, The Effects of Different Water Qualities and Irrigation Methods on Soil Chemical Properties, Research Journal of Environmental Sciences, Vol. 3, No. 4, 497-503.
- [246] Matouq, M., Amarneh, I. A., Kloub, N., Badran, O., Al-Duheisat, S. A. and S. S. Eslamian, 2009, Investigating the Effect of Combustion of Blending Jordanian Diesel Oil with Kerosene on Reducing the Environmental Impacts by Diesel Engine, International Journal of Ecological Economic & Statistics, Special Issue on Basin Ecology and Environment (BEE), Vol. 13, No. W09, 79-87.
- [247] Eslamian S. S., Gohari, A., Biabanaki, M. and R. Malekian, 2008, Estimation of Monthly Pan Evaporation Using Artificial Neural Networks and Support Vector Machines, Journal of Applied Sciences, Vol. 7, No. 19, 2900-2903.
- [248] Abedi-Koupai J., Eslamian S. S. and J. Asad Kazemi, 2008, Enhancing the available Water Content in Unsaturated Soil Zone using Hydrogel, to Improve Plant Growth Indices, Ecohydrology and Hydrobiology, Vol. 8, No. 1, 3-11.
- [249] Bazgeer, S., Kamali, G. A., Eslamian, S. S., Sedaghatkerdar, A. and I. Moradi, 2008, Pre-Harvest Wheat Yield Prediction Using Agrometeorological Indices for Different Regions of Kordestan Province, Iran, Research Journal of Environmental Sciences, Vol. 2, No. 4, 275-280.
- [250] Eslamian, S. S. and H. Feizi, 2007, Maximum Monthly Rainfall Analysis Using L-moments for an Arid Region in Isfahan Province, Iran, Journal of Applied Meteorology and Climatology, Vol. 46, No. 4, 494–503.
- [251] Modarres, R., Soltani, S. and S. S. Eslamian, 2007, The Use of Time Series Modeling for the Determination of Rainfall Climates of Iran,

International Journal of Climatology, Vol. 27, No. 6, 819–829.

- [252] Moradi, I., Nosrati, K. and S. S. Eslamian, 2007, Evaluation of the RadEst and ClimGen Stochastic Weather Generators for Low-Medium Rainfall Regions, Journal of Applied Sciences, Vol. 7, No. 19, 2900-2903.
- [253] Modarres R. and S. S. Eslamian, 2006, Streamflow Time Series Modeling of Zayandehrud River, Iranian Journal of Science and Technology, Vol. 30, No. B4, 567-570.
- [254] Mostafazadeh-fard, B., Osroosh, Y. and S. S. Eslamian, 2006, Development and Evaluation of an Automatic Surge Flow Irrigation System, Journal of Agriculture and Social Sciences, Vol. 2, No. 3, 129-132.
- [255] Coles, N. A. and Eslamian, S., 2017, Definition of Drought, Ch. 1 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 1-12.
- [256] Dalezios, N. R., Dunkel, Z., Eslamian, S., 2017, Meteorological Drought Indices: Definitions, Ch. 3 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 24-44.
- [257] Goyal, M. K. Gupta, V., Eslamian, S., 2017, Hydrological Drought: Water Surface and Duration Curve Indices, Ch. 4 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 45-72.
- [258] Dalezios, N. R., Gobin, A., Tarquis Alfonso, A. M., and Eslamian, S., 2017, Agricultural Drought Indices: Combining Crop, Climate, and Soil Factors, Ch. 5 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 73-90.
- [259] TishehZan, P. and Eslamian, S., 2017, Agricultural Drought: Organizational Perspectives, Ch. 6 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 91-108.
- [260] Bazrkar, M. H., Eslamian, S., 2017, Ocean Oscillation and Drought Indices: Application, Ch. 8 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 127-136.
- [261] Basu, R., Singh, C. K., Eslamian, S., 2017, Cause and Occurrence of Drought, Ch. 9 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 137-148.

- [262] Bazrafshan, J., Hejabi, S., Eslamian, S., 2017, Drought Modeling Examples, Ch. 11 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 167-188.
- [263] Jonathan Peter Cox, Sara Shaeri Karimi, Eslamian, S., 2017, Real-Time Drought Management, Ch. 13 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 209-216.
- [264] Garg, V. andEslamian, S., 2017, Monitoring, Assessment, and Forecasting of Drought Using Remote Sensing and the Geographical Information System. Ch. 14 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 217-252.
- [265] Dalezios, N. R., Tarquis Alfonso, A. M.,and Eslamian, S., 2017, Drought Assessment and Risk Analysis, Ch. 18 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 323-344.
- [266] Dalezios, N. R., Spyropoulosand, N. V., Eslamian, S., 2017, Remote Sensing in Drought Quantification and Assessment, Ch. 21 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 377-396.
- [267] Araghinejad, S., Hosseini- Moghari, S. M., Eslamian, S., 2017, Application of Data-Driven Models in Drought Forecasting, Ch. 23 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 423-440.
- [268] Vafakhah, M., and Eslamian, S., 2017, Application of Intelligent Technology in Rainfall Analysis, Ch. 24 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 441-460.
- [269] Vafakhah, M., Akbari Majdar, H. and Eslamian, S., 2017, Rainfall Prediction Using Time Series Analysis, Ch. 28 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 517-540.
- [270] González, M. H., Garbarini, E. M., Rolla, A. L., and Eslamian, S., 2017, Meteorological Drought Indices: Rainfall Prediction in Argentina, Ch. 29 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity,

Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 541-570.

- [271] Hadizadeh, R. and Eslamian, S., 2017, Modeling Hydrological Processby ARIMA–GARCH Time Series, Ch. 30 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 571-590.
- [272] Mujere, N., Yang, X. and Eslamian, S., 2017, Gradation of Drought-Prone Area, Ch. 31 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 591-606.
- [273] Mahmudul Haque, M., Amir Ahmed, A., Rahman, A., Eslamian, S., 2017, Drought Losses to Local Economy, Ch. 33 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 627-642.
- [274] Fakhruddin, B. S. H. M., Eslamian, S., 2017, Analysis of Drought Factors Affecting the Economy, Ch. 34 in Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 643-656.
- [275] Dalezios, N. R., Eslamian, S., 2017, Environmental Impacts of Drought on Desertification Classification ,Ch. 3 in Handbook of Drought and Water Scarcity, Vol. 2: Environmental Impacts and Analysis of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 45-64.
- [276] Nazif, S. and Tavakolifar, H., Eslamian, S., 2017, Climate Change Impact on Urban Water Deficit, Ch. 5 in Handbook of Drought and Water Scarcity, Vol. 2: Environmental Impacts and Analysis of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 81-106.
- [277] Shahid, S., Alamgir, M., Wang, X.-J., Eslamian, S., 2017, Climate Change Impacts on and Adaptation to Groundwater, Ch. 6 in Handbook of Drought and Water Scarcity, Vol. 2: Environmental Impacts and Analysis of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 107-124.
- [278] Orimoogunje, O. O. I., Eslamian, S., 2017, Minimizing the Impacts of Drought, Ch. 8 in Handbook of Drought and Water Scarcity, Vol.
 2: Environmental Impacts and Analysis of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 143-162.
- [279] Maleksaeidi, H., Keshavarz, M., Karami, E., Eslamian, S., 2017, Climate Change and

Drought: Building Resilience for an Unpredictable Future, Ch. 9 in Handbook of Drought and Water Scarcity, Vol. 2: Environmental Impacts and Analysis of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 163-186.

- [280] Reyhani, M. N., Eslamian, S., Davari, A., 2017, Sustainable Agriculture: Building Social-Ecological Resilience, Ch. 10 in Handbook of Drought and Water Scarcity, Vol. 2: Environmental Impacts and Analysis of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 187 -204.
- [281] Crusberg, T. C., Eslamian, S., 2017, Drought and Water Quality, Ch. 11 in Handbook of Drought and Water Scarcity, Vol. 2: Environmental Impacts and Analysis of Drought and Water Scarcity, Ed. by Eslamian S. and Eslamian F., Francis and Taylor, CRC Press, USA, 205-218.
- [282] Eslamian, S. and F. Eslamian, 2017, Handbook of Drought and Water Scarcity, Vol. 1: Principles of Drought and Water Scarcity, Francis and Taylor, CRC Group, USA, 660 Pages.
- [283] Eslamian, S. and F. Eslamian, 2017, Handbook of Drought and Water Scarcity, Vol. 2: Environmental Impacts and Analysis of Drought and Water Scarcity, Francis and Taylor, CRC Group, USA, 680 Pages.
- [284] Eslamian, S. and F. Eslamian, 2017, Handbook of Drought and Water Scarcity, Vol. 3: Management of Drought and Water Scarcity, Francis and Taylor, CRC Group, USA, 645. Pages.
- [285] Angelakis, A. N., Chiotis, E., Eslamian, S., Weingartner, H., 2017, Underground Aqueducts Handbook, Taylor and Francis Group, CRC Press, USA, 511 Pages.
- [286] Zalewski, M., McClain, M. E., and Eslamian, S., 2016, New Challenges and Dimensions of Ecohydrology, Part II Ecohydrology and Hydrobiology, Special Issue, Volume 16, Issue 2, Pages 71-124, Elsevier.
- [287] Zalewski, M., McClain, M. E., and Eslamian, S., 2016, New Challenges and Dimensions of Ecohydrology, Part I, Ecohydrology and Hydrobiology, Special Issue, Volume 16, Issue 1, Pages 1-70, Elsevier.
- [288] Godarzi, A., Eslamian, S., Ostad-Ali-Askari, K., 2016, Water in Literature Aspects: Social and Cultural Aspects, Nashreshahr, 135 Pages.
- [289] Eslamian, S., Ostad-Ali-Askari, K., Salehi, M., Agha-Esmaeli, M., Sadeghi, M., Navabpour, B., Mohri-Esfahani, E., Mousavi-Madani, M., Zad-Bagher-Seighalani, E., Sadri, A., Shirvani-Dastgerdi, H. R., 2016, Engineering Operations Research: Linear Planning, Optimization and Genetic Algorithm, Kankash, 126 Pages.

- [290] Eslamian, S., Ostad-Ali-Askari, K., Shayannejad, M., Ghasemi-Zeniani, M., Marzi-Nohadani, M., Heidari, F., Mohri-Esfahani, E., Haeri-Hamadani, M., 2016., Groundwater Hydrodynamic, Horoufchin, 193 Pages.
- [291] Ostad-Ali-Askari, K., Shayannejad, M., Eslamian, S., Jahangiri, A. A., Shabani, A. H., 2016, Environmental Hydraulics of Open Channel Flows, Kankash, 332 Pages.
- [292] Eslamian, S. S. and R. Mirabbasi, 2017, Application of Statistical Methods in Water Sciences, Aeij Publishing, Tehran, Iran, Under Press.
- [293] Eslamian, S, 2015, (ed.) Urban Water Reuse Handbook, Francis and Taylor, CRC Group, USA, 1141 Pages.
- [294] Eslamian, S., 2014, (ed.) Handbook of Engineering Hydrology, Vol. 1: Fundamentals and Applications, Taylor and Francis, CRC Group, USA, 636 Pages.
- [295] Eslamian, S., 2014, (ed.) Handbook of Engineering Hydrology, Vol. 2: Modeling, Climate Change and Variability, Taylor and Francis, CRC Group, USA, 646 Pages.
- [296] Eslamian, S., 2014, (ed.) Handbook of Engineering Hydrology, Vol. 3: Environmental Hydrology and Water Management, Taylor and Francis, CRC Group, USA, 606 Pages.
- [297] Eslamian, S. S., 2013, Groundwater and Surface Water Interaction (GSWI): 3: Unconventional Groundwater, International Journal of Water, Special Issue Volume, Indersciences, Vol. 7, No. 1/2, 1-141.

- [298] Eslamian, S. S., 2011, Groundwater and Surface Water Interaction (GSWI): 2. Case Studies, International Journal of Water, Special Issue Volume, Indersciences, Vol. 6, No. 1, 1-136.
- [299] Eslamian, S. S., and S. Tarkesh Esfahani, 2011, Water Reuse (Urban Waste Water Application), Arkan Danesh Publishing, Isfahan, Iran, 327 Pages.
- [300] Sharifani, M. M. and S. S. Eslamian, 2010, Humid Region Fruit Trees, Aeij Publishing, Tehran, Iran.
- [301] Eslamian, S. S., 2009, Basin Ecology and Environment (BEE), International Journal of Ecological Economic & Statistics, Ed., Special Issue Volume, CESER, Vol. 13, No. W09, 1-99.
- [302] Eslamian, S. S., 2009, Groundwater and Surface Water Interaction (GSWI): 1. Quality, International Journal of Water, Special Issue Volume, Indersciences, Vol. 5, No. 2, 81-204.
- [303] Eslamian, S. S., 2009, Wind Modeling and Frequency Analysis (WMFA), International Journal of Global Energy Issues, Special Issue Volume, Indersciences. Vol. 32, No. 3, 175-304.
- [304] Eslamian, S. S., 2008, Stream Ecology and Low Flows (SELF), International Journal of Ecological Economic & Statistics, Ed., Special Issue Volume, CESER, Vol. 12, No. F08, 1-97.
- [305] Eslamian, S. S., Soltani S. and A. Zarei, 2005, Application of Statistical Methods in Environmental Sciences, Arkan Publishing, Isfahan, Iran, 408 p.
- [306] Eslamian, S. S. and S. Soltani, 2002, Flood Frequency Analysis, Arkan Publishing, Isfahan, Iran, 332 p.

Citation: O. Kaveh, E. Saeid, C. Theodore, P. Vijay, R. Nicolas, A. Saba and G. Saeid, "Rotational Steady State Viscose for Buried Structures against Dynamic Loads with Integrating Seismic Damper of Jelly and Plasma Media", International Journal of Research Studies in Science, Engineering and Technology, vol. 4, no. 10, pp. 37-57, 2017.

Copyright: © 2017 O. Kaveh, et al, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.