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Abstract: This paper aims to compare the results from the feed forward back propagation networks and radial 

basis networks for optimal design of reinforced concrete cantilever beams. Genetic algorithms are applied to 

obtain the optima data for the use of the networks. The inequality and quality constraints used in the algorithm 

to find the optimal results all comply with the ACI code, considering bending moment, shear force and 

deflection. The given conditions are the compressive strength of concrete, yield strength of steel, beam span, 

dead and live loads, and design variables are the effective depth and width of the beam as well as the steel ratio. 

The objective function is to minimize the total cost of the tension steel, stirrups and concrete. A variety of 

cantilever beams are designed and the optimal results are randomly divided into three sets: the training set, 

validation set and test set. The inputs of neural networks are the compressive strength of concrete, yield strength 

of steel and span, width and effective depth of the beam, as well as vertical loads applied on the beam; the 

targets of neural networks are the steel ratio and cost of the beam. Numerical results show the performance of 

feed forward back propagation networks is excellent and better than that of radial basis networks. 

Keywords: Reinforced concrete beams, Genetic algorithms, neural networks, Regression analysis. 

 

1. INTRODUCTION 

The genetic algorithm (GA) is inspired by Charles Darwin's well-known “survival of the fittest” 

theorem -- Individuals that are more "fit" have better potential for survival, The preliminary structure 

of genetic algorithms was introduced by Professor John Holland at the University of Michigan, who 

in 1975 published the ground-breaking book “Adaptation in Natural and Artificial System” [1]. 

Genetic algorithms have a variety of applications in a wide spectrum of problem areas including 

structural designs in civil engineering, such as plane frame optimal design [2], optimization of 

structures [3], multi objective optimization of trusses [4], global optimization of grillages [5], locating 

the critical slip surface in slope stability analyses [6], dependability assurance in the long-span 

suspension bridge design [7], continuous reinforced concreted beams [8], etc. 

The preliminary theoretical base for contemporary neural networks was independently proposed by 

Bain [9] and James [10], whose works suggested that interactions among neurons within the brain 

resulted in both thoughts and body activities. McCullouch and Pitts [11] created a computational 

model for neural networks based on mathematics and algorithms. They called this model threshold 

logic that paved the way for neural network research to split into two distinct approaches. One 

approach focused on biological processes in the brain and the other focused on the application of 

neural networks to artificial intelligence. McCulloch and Pitts further claimed that neurons with 

binary inputs and a step-threshold activation function were analogous to first order systems. There 

were other authors devoted to this field, just to name a few: Hebb [12] revolutionized the perception 

of artificial neurons; Rosenblatt [13], using the McCulloch-Pitts neuron and the findings of Hebb, 

developed the first perception model of the neuron still widely accepted nowadays; Hopfield [14] and 

Hopfield et al. [15] illustrated from the study on the neuronal structure of the common garden slug 

that artificial neural networks are able to solve non-separable problems by placing a hidden layer 

between the input and output layers; Rumelhart and McClelland [16] invented the most famous 

learning algorithm that used a gradient descent technique to propagate error through a network and 

modify the weights by minimizing the global error, which marks the beginning of the current artificial 

neural networks. 

Due to the strengths of genetic algorithms solving nonlinear optimization problems and superior 

learning ability of neural networks, this paper combines these two techniques to expedite the optimal 
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design of reinforced concrete cantilever beams and compare the results obtained from feedforward 

backpropagation networks and radial basis networks. 

2. GENETIC ALGORITHMS  

Natural selection occurs at every life stage of an individual. An individual organism must survive 

until adulthood before it can reproduce. In many species, adults must compete with each other for 

mates through sexual selection, and success in this competition determines who will parent the next 

generation. The longer individuals can survive and the more competitive they are, the more offspring 

they will reproduce. Inspired by the natural evolution, genetic algorithms simulate the same process: 

inheritance, selection, crossover and mutation. It is a random search technique that can solve both 

constrained and unconstrained nonlinear optimization problems, whose constraints can be in the form 

of equality or inequality with bounds on the variables. Being less susceptible to getting stuck at local 

optima than gradient search methods is one of its advantages. The evolution usually starts from a 

population of randomly generated individuals. In each generation, the fitness of every individual in 

the population is evaluated. Multiple individuals are stochastically selected from the current 

population based on their fitness, recombined and randomly mutated to form a new population. A 

small portion of fittest individuals called elites are kept unchanged and passed on to the next 

generation. The new population is then used in the next iteration of the algorithm. The Matlab 

Toolbox for Genetic Algorithm [17] is employed in this paper to find the optimal solution.  

3. NEURAL NETWORKS  

Two kinds of artificial neural networks are used in this paper: feedforward backpropagation networks 

and radial basis networks, which are briefly illustrated as follows: 

3.1. Feedforward Backpropagation Networks 

The neural network used in this paper is a two-layer feedforward backpropagation neural network, as 

shown in Figure 1, where there are six inputs and two outputs. The transfer function used in the single 

hidden layer with q neurons is the tan-sigmoid function  

                 (1) 

where ni=wi,1R1+ wi,2R2+…+wi,6R6+ bi, R1, R2,…,R6 are the inputs, wi,1 , wi,2 ,…, wi,6  are the weights 

connecting the input vector and the ith neuron, and bi is the bias of the ith neuron. The output layer 

with two neurons uses the linear transfer function  

           (2)  

where mi=Wi,1h1+ Wi,2h2+……+Wi,qhq+ Bi, Wi,1,Wi,2,…,Wi,q are the weights connecting the neurons of 

the hidden layer and the ith neuron of the output layer, and Bi is the bias of the ith output neuron 

 

Fig1. The feedforward backpropagation neural network with two layers 
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3.2. Radial Basis Networks    

The radial basis network has two layers: the radial basis layer and output linear layer. The transfer 

function in the radial basis layer is the radial basis function  

2

)( nenradbas                                                                                                      (3) 

where n= bPw  is the vector distance (Euclidean distance) between the weight vector w and the 

input vector P multiplied by the bias b. As the distance between w and P decreases, the output 

increases. Thus the radial basis function acts as a detector that produces 1.0 whenever the input is 

identical to the weight vector. Each bias in the radial basis layer is set to be 0.8326/SPREAD, which 

causes radial basis function to output 0.5 when Pw  = +/- SPREAD. The parameter SPREAD 

needs to be large enough so that several radial basis neurons respond strongly to overlapping region of 

the input space, but not so large that all the neurons respond in essentially same manner [18]. The 

SPREAD can’t be too small either, because it means many neurons are required to fit a smooth 

function and the network might not generalize well. The transfer function for the output layer is the 

linear function, which is the same as the feedforward backpropagation network. There are two 

functions provided in MATLAB to design the radial basis network: newrb and newrbe. The function 

newrb iteratively creates one radial basis neuron at a time. At each iteration, the input vector rending 

the network error lower is used to create a radial basis neuron. Neurons are added to the network until 

the sum-squared error falls below an error goal or maximum number of neurons has been reached. 

The function newrbe can produces a network with zero error on the training vectors. It creates the 

same number of radial basis neurons as there are input vectors, and each neuron acts as detector for a 

different input vector. The major disadvantage of newrbe is that it produces a network with as many 

hidden neurons as there are input vectors. For this reason, it does not yield an acceptable solution 

when many input vectors are required to suitably define a network, as is typically the case. Therefore, 

the function newrb is chosen in this paper 

To evaluate the prediction accuracy, this paper performs the regression analysis between the network 

outputs and targets. The results are expressed by the parameters of the linear regression [19]: the 

correlation coefficient, the slope of the regression line and y-intercept.  

4. CONSTRAINTS OF CANTILEVER BEAMS 

A number of singly reinforced cantilever beams with uniformly distributed dead load w= 1.2wD 

+1.6wL are optimally designed by the genetic algorithm, as shown in Figure 2(a), where wD is the dead 

load and wL is the lived applied on the beam, based on which the neural network is then trained and 

tested. The constraints required to design the beam are formulated according to the ultimate-strength 

design of the ACI Building Code Requirements for Structural Concrete and Commentary [20], 

considering the moment, shear force and deflection. The equality and inequality constraints for the 

genetic algorithm are discussed as follows, where force and length are measured in the units of kgf 

(=9.81N) and cm, respectively. 

4.1. The Strength Requirement For Flexure  

The moment diagram is shown in Figure 2(b). The strength requirement for flexure takes the form of 

nmu MM                                                                                                (4) 

where Mu = wL
2
/2 is the factored bending moment and w =1.2 wD +1.6 wL is the factored uniformly 

distributed load applied to the cantilever beam, m is the strength reduction factor for flexure, which is  

 9.0
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for tied sections, where t is the tensile strain in the steel and y is the yielding strain of the tensile 

reinforcement. The nominal resisting moment is  
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where fy is the yield strength of the tension reinforcement, cf   is the compressive strength of concrete, 

b and d are the width and effective depth of the beam, respectively, and  is the tension reinforcement 

ratio. To have reasonable assurance of ductile mode of failure, ACI code requires the steel strain to be 

at least 0.004; therefore, the reinforcement ratio  has the upper limit as  

 
y

c

f

f

7

3
85.0 1max


                                                          (7) 

where 1 is the value of the concrete stress block depth factor. The code also stipulates the minimum 

steel requirement as  

)
8.0

,
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y

c

y f
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                 (8)  

so that the reinforced concrete element does not behave as a plain concrete section. Once  is decided, 

the total amount of tension steel can be found, which is bd  . In order to have enough space to 

arrange the longitudinal steel bars and stirrups, the width of the beam is assumed to be at least 20 cm. 

4.2. The Strength of Shear Reinforcement  

The shear diagram is shown in Figure 2(c). Assuming that vertical stirrups are used, the strength of 

shear reinforcement  

s

dfA
V

yv

s                                                                       (9) 

where s is the shear reinforcement spacing. If the nominal shear resistance bdfV cc
 53.0  is less 

than the nominal vertical shear force nsu VV / , the shear reinforcement has to carry the difference 

in the two values, but the strength of shear reinforcement cannot be more than bdfc
12.2 ; hence  

bdfV
V

VVV cc

s

u
cns

 12.2


                                               (10) 

where Vu is the factored shear force and 75.0s  is the strength reduction factor for shear. A 

minimum shear reinforcement 
y

cv
f

bs
fA  2.0 or

y

v
f

bs
A 5.3 , whichever is larger, must be 

provided to prevent brittle failure, if the factored shear force Vu exceeds one-half the shear strength 

sVc.  

4.3. Shear Reinforcement Spacing 

According to the ACI code, the critical section for determining the closest stirrup spacing may be 

taken at a distance d from the face of support. It also stipulates that the maximum stirrup spacing s is 

d/2 but no to exceed 60 cm, 
bf
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but not to exceed 30 cm, 
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5.3
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u
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V
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
(i.e., csu VV  3 ). Since the 

spacing of stirrups cannot be varied continuously, they must change by jumps. Therefore, the span of 

the beam is divided into four regions: I, II, III and IV, as shown in Figure 3, where 3 csV is assumed 

to be less than or equal to (wL-wd) and no stirrups are needed in Region IV. The first stirrup is place 

at 5 cm from the support. Once the minimum spacing of stirrups in each region is found, the total 

number and amount of stirrups required in the beam can be obtained. 
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Fig2. The cantilever beam. (a) Uniformly distributed load w; (b) moment diagram and (c) shear diagram. 

4.4. Deflection 

Serviceability of a structure is determined by its deflection, cracking, extent of corrosion of its 

reinforcement and surface deterioration of its concrete. This paper only deals with deflection. The 

maximum instantaneous deflection in an elastic cantilever beam caused by dead load plus live load 

can be expressed as  

ec
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iDL
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Lww

8

)( 4
                                                          (11) 

If there is only dead load applied to the elastic beam, the maximum instantaneous deflection  
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8
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                                                                                                                                   (12) 

 

Fig3. Four regions of the cantilever beam to arrange the web reinforcement. 
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and the instantaneous deflection due to live load can then be obtained by subtracting Eq. (12) from 

Eq. (11), that is,  

iL=iDL-iD                                                                                        (13) 

In Eqs. (11) and (12), Ec is the modulus of elasticity of concrete and Ie is the effective moment of 

inertia, a smooth transition between the moment of inertia Icr of the cracked section and the moment 

of inertia Ig of the gross uncracked concrete section. The effective moment of inertia is defined as 

gcr
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a
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M
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M
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where Ma is the moment at the fixed end and  

2/h

fI
M

rg

cr                                                                   (15) 

is the cracking moment, where fr is the modulus of concrete rupture strength and h is the depth of the 

beam. Suppose that the cantilever beam will support or be attached to nonstructural elements likely to 

be damaged by large deflections. The ACI code stipulates that sum of long-term deflection due to the 

sustained dead load plus immediate deflection due to the live load has to be less than L/480, that is,  

 
480

L
iLiDsum                                                      (16) 

where  is a multiplying factor considering long-term loading and shrinkage. According to the ACI 

code, 




501

T
                                                             (17) 

where  is the compression reinforcement ratio and T is a time-dependent factor that is taken as 2.0 

for loading time duration of 5 years or more. Because  is zero for a singly reinforced beam and 5 

years or more are considered, the multiplying factor =2. 

5. NUMERICAL RESULTS  

The width b and effective depth d of the cantilever beam and tension reinforcement ratio  are the 

three variables for genetic algorithms. The fitness function is the total cost in New Taiwan Dollars of 

the tension reinforcement, stirrups and concrete. The inequality and equality constraints to formulate 

the optimization problem are built according to the discussion in Section 4. Based on the often-used 

materials and customs in Taiwan, this paper selects three kinds of yield strength fy of the tension 

reinforcement: 2800 kgf/cm
2
, 3500 kgf/cm

2
 and 4200 kgf/cm

2
, three kinds of compressive strength fc 

of the concrete: 210 kgf/cm, 280 kgf/cm
2
 and 350 kgf/cm

2
, three kinds of span L: 2 m, 3 m and 4 m 

and four kinds of dead load wd: 2100 kgf/m, 2300 kgf/m, 2500 kgf/m and 2700 kgf/m. For simplicity, 

fix the live load at 1800 kgf/m. Hence, there are 108 combinations of beams to be designed. The 

prices for steel and concrete in Taiwan are NT$ 19.5/kgf and NT$ 1800/m
3
,
 
respectively. No. 3 

vertical closed stirrups are used for all regions of the cantilever beam. 

5.1. Genetic Algorithms 

To run the genetic algorithm of MATLAB, some parameters need to be selected. Here are the values 

used in this paper: The population size is set to be 20, crossover rate 0.8, and elite number 2. 

Furthermore, all the individuals are encoded as real numbers; “Rank” is used as the scaling function 

that scales the fitness values based on the rank of each individual; “Roulette” is the selection function 

to choose parents for the next generation; The crossover function applies the “Two-Point Strategy” to 

form a new child for the next generation; The “Adaptive Feasible Function” is chosen as the mutation 

function to make small random changes in the individuals and ensure that linear constraints and 

bounds are satisfied. Taken as examples, some of the optimal results are listed in Table 1, where dist1 

represents the range of region I, dist2-dist1 the range of region II, and dist3-dist2 the range of region 

III, as indicated in Figure 3, and spacing represents the stirrup spacing in each region. 
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5.2. Feedforward Backpropagation Networks 

For the purpose of training and testing the neural networks, the optimal results of the 108 beams are 

divided into three sets: training set (68 data), validation set (20 data) and test set (20 data). The input 

vector of the neural network consists of six elements: fy, fc, wd, L, b, and d, and the targets are the 

tension reinforcement ratio  and minimum price C. In light of past experience, six neurons are used 

in the hidden layer, which is the same number of elements in the input vector. The training process of 

the network with 6 neurons in the hidden layer is shown in Figure 4. The training stops at epoch 90 

and the performance function is minimized to be 1.422910
-4

. After the neural network is trained, the 

test data are then substituted into the network to do simulation. Figures 5 and 6 show the scatter plots 

of network outputs and targets of the 20 test data for the steel ratio and minimum cost C, respectively. 

Regression analysis of the network outputs and desired outputs (targets) are also carried out to 

evaluate the network accuracy. Table 2 shows the results, where the correlation coefficients between 

the network outputs and targets for the steel ratio and minimum cost are as high as 0.99971 and 

0.99992, respectively, and the slope of the regression line and y-intercept are also close to one and 

zero, respectively, which suggests the excellent performance of the network. If more neurons are used 

in the hidden layer, the accuracy does not improve significantly or even sometimes becomes worse, as 

shown in Table 2. 

 

Fig4. The training process of the feedforward backpropagation network with 6 neurons in the hidden layer. 

 

Fig5. The scatter plot of the network outputs and targets of the 20 test data for the tension reinforcement ratio  

with 6neurons in the hidden layer. 



Comparison between Feedforward Backpropagation and Radial Basis Neural Networks for Optimal 

Design of Reinforced Concrete Cantilever Beams 

 

 
International Journal of Research Studies in Science, Engineering and Technology [IJRSSET]                61  

 

Fig6. The scatter plot of the network outputs and targets of 20 test data for the minimum cost C (10
3
NT$) with 6 

neurons in the hidden layer. 

Table1. Some optimal design results of the reinforced concrete cantilever beams. 

fy 

(kgf/cm
2
) 

fc 

(kgf/cm
2
) 

L 

(m) 

wd 

(kgf/m) 

dist1/spacing 

(cm/cm) 

(dist2-dist1)/spacing 

(cm/cm) 

(dist3-dist2)/spacing 

(cm/cm) 

2800 210 3 2100 74.0/18.5 (139.5-74.0)/37.0 (219.8-139.5)/37.0 

2800 280 4 2300 96.0/24.0 (172.2-96.0)/48.0 (286.1-172.2)/48.0 

3500 280 2 2100 54.9/13.7 (62.3-54.9)/27.4 (131.2-62.3)/27.4 

3500 350 4 2100 94.4/23.6 (131.1-94.4)/47.2 (265.6-131.1)/47.2 

4200 210 3 2700 90.7/22.7 (127.8-90.7)/45.4 (213.9-127.8)/45.4 

4200 350 3 2500 79.8/20.0 (97.8-79.8)/39.9 (198.9-97.8/39.9 
 

b 

(cm) 

d 

(cm) 
 
 

C 

(10
3
NT$) 

20.3 74.0 0.009 1.675 

20.1 96.0 0.010 2.884 

20.4 54.9 0.006 0.748 

20.7 94.4 0.008 2.617 

20.2 90.7 0.005 1.601 

20.0 79.8 0.006 1.489 

Table2. Regression analysis of the network outputs and targets of the test data for different neurons in the 

hidden layer. 

No. of Neurons in the 

Hidden Layer 

Targets  

(or Outputs) 

Slope of the linear 

regression. 

Y-intercept of the 

linear regression 

Correlation 

coefficient 

6 Steel Ratio  0.995088 0.000043 0.999711 

Minimum Cost C 0.996955 0.001150 0.999922 

12 Steel Ratio  1.005153 -0.000028 0.999637 

Minimum Cost C 0.998978 0.001651 0.999924 

18 Steel Ratio  0.985153 0.000164 0.994179 

Minimum Cost C 1.002919 0.004005 0.999719 

24 Steel Ratio  0.958795 0.000293 0.944512 

Minimum Cost C 0.978368 0.065326 0.995196 

5.3. Radial Basis Networks 

Because the radial basis network does not include the validation data during the training process, only 

training and testing data are considered. For comparison, these two sets of data are identical to those 

of feedforward backpropagation with 6 neurons in the hidden layer. The mean square error between 

the network outputs and targets is set to be 0.00014229, which is the same as the feedforward 

backpropagation. The value of SPREAD is gradually increased from 0.1when the network is being 
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trained. By observing the regression analysis of the network outputs and targets for each SPREAD, the 

network with SPREAD=3 is found to have best performance; therefore, SPREAD=3 is selected for the 

radial basis layer. After the training is complete, the test data are then substituted into the network. 

Figures 7 and 8 show the scatter plots of network outputs and targets of the 20 test data for the steel 

ratio  and the minimum C, respectively. Regression analysis of the network outputs and desired 

outputs (targets) are also carried out to determine the network accuracy. The results reveal that the 

 

Fig7. The scatter plot of the network outputs and targets of the 20 test data for the tension reinforcement ratio  

of the radial basis network 

 

Fig8. The scatter plot of the network outputs and targets of the 20 test data for the minimum cost C (10
3
NT$) of 

the radial basis network. 

correlation coefficients between the network outputs and targets for the steel ratio and minimum cost 

are 0.94617 and 0.99945, respectively, and the slope of the regression line and y-intercept are not 

simultaneously close to one and zero, respectively.   

6. CONCLUSIONS 

Taking the optimal design of cantilever beams as example, the performances of feedforward 

backpropagation networks and radial basis networks are compared. Genetic algorithms are first used 

to obtain the optimal results, which serve as the training, validation and test data of the neural 

networks. Using 6 neurons in the hidden layer of the feedforward backpropagation network is enough 

for the network to have very high accuracy, with correlation coefficients of the steel ratio and cost 

reaching higher than 0.999, the slope of the regression line close to 1 and y-intercept of the regression 

close to zero. More neurons in the hidden layer are not necessarily beneficial to the network. The 

trained networks can quickly design cantilever beams with high accuracy once the required inputs are 
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entered. As to the radial basis networks, although the correlation coefficients are good, the slope and 

y-intercept of the regression line are not simultaneously close to one and zero, respectively, which 

renders them worse than feedforwad backpropagation networks. The validation data not included in 

the radial basis networks to monitor the training process is probably the major reason to have poor 

performance.  
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