Energy Efficient Mobile Relay Arrangement in Data-Intensive Wireless Sensor Networks

Shaik Mariyam Fatima¹, Ratna Raju Mukiri²

¹Pg Scholar, Eswar College of Engineering, Narasaraopet, Guntur.
²Asst. Professor, Eswar College of Engineering, Narasaraopet, Guntur.

Abstract: Wireless Sensor Networks (WSNs) are increasingly used in data-intensive applications such as microclimate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit all the data generated within an application’s lifetime to the base station despite the fact that sensor nodes have limited power supplies. We propose using low cost disposable mobile relays to reduce the energy consumption of data-intensive WSNs. Our approach differs from previous work in two main aspects. First, it does not require complex motion planning of mobile nodes, so it can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless transmissions into a holistic optimization framework. Our framework consists of three main algorithms. The first algorithm computes an optimal routing tree assuming no nodes can move. The second algorithm improves the topology of the routing tree by greedily adding new nodes exploiting mobility of the newly added nodes. The third algorithm improves the routing tree by relocating its nodes without changing its topology. This iterative algorithm converges on the optimal position for each node given the constraint that the routing tree topology does not change. We present efficient distributed implementations for each algorithm that require only limited, localized synchronization. Because we do not necessarily compute an optimal topology, our final routing tree is not necessarily optimal. However, our simulation results show that our algorithms significantly outperform the best existing solutions.

Keywords: Wireless Sensor Networks (WSNs), microclimate monitoring, Optimal Mobile Relay Configuration (OMRC), low-cost disposable mobile relays, A mobile base station, Data mules, holistic optimization framework.

1. INTRODUCTION

WSNs have been deployed in a variety of data-intensive applications including microclimate and habitat monitoring precision agriculture, and audio/video surveillance. A moderate-size WSN can gather up to 1 Gb/year from a biological habitat. Due to the limited storage capacity of sensor nodes, most data must be transmitted to the base station for archiving and analysis. However, sensor nodes must operate on limited power supplies such as batteries or small solar panels. Therefore, a key challenge faced by data-intensive WSNs is to minimize the energy consumption of sensor nodes so that all the data generated within the lifetime of the application can be transmitted to the base station. Several different approaches have been proposed to significantly reduce the energy cost of WSNs by using the mobility of nodes. A robotic unit may move around the network and collect data from static nodes through one-hop or multihop transmissions. The mobile node may serve as the base station or a “data mule” that transports data between static nodes and the base station. Sensors have the capabilities of doing sensing, data processing, and wirelessly transmitting collected data back to base stations by way of multiple-hop relay. Sensor itself supplies necessary operation with limited battery energy. Those operations that consume energy are transmitting and receiving data, running applications, measuring power, and even staying in standby mode. Among others, data transmission consumes the most energy. A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, humidity, motion or pollutants and to cooperatively pass their data through the network to a main location. The more modern networks are bi-directional, also enabling control of sensor activity. The development of wireless sensor networks was motivated by military applications such as battlefield surveillance; today such networks are used in many industrial and consumer applications, such as industrial process monitoring and control, machine health monitoring, and so on. Figure 1 shows an example of a wireless sensor network.
Recent advancement in mobile sensor platform technology has been taken into attention that mobile elements are utilized to improve the WSN’s performances such as coverage, connectivity, reliability and energy efficiency. The concept of mobile relay is that the mobile nodes change their locations so as to minimize the total energy consumed by both wireless transmission and locomotion. The conventional methods, however, do not take into account the energy level, and as a result they do not always prolong the network lifetime.

Related Work

Analyzing the three different approaches: Mobile base stations, data mules and mobile relays. All the three approaches use mobility to reduce energy consumption in wireless sensor networks.

2. EXISTING SYSTEM

A key challenge faced by data-intensive WSNs is to minimize the energy consumption of sensor nodes so that all the data generated within the lifetime of the application can be transmitted to the base station. Several different approaches have been proposed to significantly reduce the energy cost of WSNs by using the mobility of nodes. A robotic unit may move around the network and collect data from static nodes through one-hop or multihop transmissions. The mobile node may serve as the base station or a “data mule” that transports data between static nodes and the base station. Mobile nodes may also be used as relays that forward data from source nodes to the base station. Several movement strategies for mobile relays have been studied.

Disadvantages of Existing System:

- First, the movement cost of mobile nodes is not accounted for in the total network energy consumption. Instead, mobile nodes are often assumed to have replenishable energy supplies which are not always feasible due to the constraints of the physical environment.
- Second, complex motion planning of mobile nodes is often assumed in existing solutions which introduces significant design complexity and manufacturing costs.
- In mobile nodes need to repeatedly compute optimal motion paths and change their location, their orientation and/or speed of movement. Such capabilities are usually not supported by existing low-cost mobile sensor platforms.

3. PROPOSED SYSTEM

In this paper, we use low-cost disposable mobile relays to reduce the total energy consumption of data-intensive WSNs. Different from mobile base station or data mules, mobile relays do not transport data; instead, they move to different locations and then remain stationary to forward data along the paths from the sources to the base station. Thus, the communication delays can be significantly reduced compared with using mobile sinks or data mules. Moreover, each mobile node performs a single relocation unlike other approaches which require repeated relocations.

Advantages Of Proposed System
Our approach takes advantage of this capability by assuming that we have a large number of mobile relay nodes.

On the other hand, due to low manufacturing cost, existing mobile sensor platforms are typically powered by batteries and only capable of limited mobility.

Consistent with this constraint, our approach only requires one-shot relocation to designated positions after deployment. Compared with our approach, existing mobility approaches typically assume a small number of powerful mobile nodes, which does not exploit the availability of many low-cost mobile nodes.

Figure 4 shows the Proposed Network.

Figure 4. Proposed Network

A. Mobile Base Station

A mobile base station is a sensor node collects the data by moving around the network from the nodes. In some work, in order to balance the transmission load, all nodes are performing multiple hop transmissions to the base station. The goal is to rotate the nodes which are close to the base station. Before the nodes suffer buffer overflows, the base station computes the mobility path to collect data from the visited nodes. Several rendezvous based data collection algorithms are proposed, where the mobile base station only visits a selected set of nodes referred to as rendezvous points within a deadline and the rendezvous points buffer the data from sources. High data traffic towards the base station is always a threat to the network's lifetime. The battery life of the base station gets depleted very quickly due to the sensor nodes which are located near the base station relay data for a large part of the network. The proposed solution includes the mobility of the base station such that nodes located near base station changes over time. All the above approaches incur high latency due to the low to moderate speed of mobile base stations. Figure 2 shows Mobile base station.

Figure 2. Mobile base station

B. Data Mules

Data mules are another form of base stations. They gather data from the sensors and carry it to the sink. The data mule collects the data by visiting all the sources and then transmits it to the static base station through the network. In order to minimize the communication and mobility energy
consumption the mobility paths are determined. Analyses architecture based on mobility to address the energy efficient data collection problem in a sensor network. This approach utilizes the mobile nodes as forwarding agents. As a mobile node moves in close propinquity to sensors, data is transmitted to the mobile node for later dumps at the destination. In the MULE architecture sensors transmit data only over a short range that requires less transmission power. However, latency is increased because a sensor has to wait for a mule before its data can be delivered. Figure 3. The three tiers of the MULE architecture. The Mule architecture has high latency and this limits its applicability to real time applications (although this can be mitigated by collapsing the MULE and access point tiers). The system requires sufficient mobility. For example, mules may not arrive at a sensor or after picking the data may not reach near an access-point to deliver it. Also, data may be lost because of radio-communication errors or mules crashing. To improve data delivery, higher-level protocols need to be incorporated in the MULE architecture. Data mules also introduce large delays like base stations since sensors have to wait for a mule to pass by before initiating their transmission.

Figure 3. The three tiers of the MULE architecture

C. Mobile Relay

In this approach, the network consists of three nodes such as mobile relay nodes along with static base station and data sources. To reduce the transmission cost relay nodes do not transport data rather it will move to different locations. We use the mobile relay approach in this work. It shows that an iterative mobility algorithm where each relay node moves to the midpoint of its neighbors converges on the optimal solution for a single routing path this paper presents mobility control scheme for improving communication performance in WSN. The objectives of the paper are 1) Analyze when controlled mobility can improve fundamental networking performance metrics such as power efficiency and robustness of communications 2) Provide initial design for such networks. Mobile nodes move to midpoint of the neighbors only when movement is beneficial. Unlike mobile base stations and data mules, our approach reduces the energy consumption of both mobility and transmission. Our approach also relocates each mobile relay only once immediately after deployment. The paper study the energy optimization problem that accounts for energy costs associated with both communication and physical node movement. Unlike previous mobile relay schemes the proposed solution consider all possible locations as possible target locations for a mobile node instead of just the midpoint of its neighbors.

The network consists of mobile relay nodes along with static base station and data sources. Relay nodes do not transport data; instead, they move to different locations to decrease the transmission costs. We use the mobile relay approach in this paper. Shows that an iterative mobility algorithm where each relay node moves to the midpoint of its neighbors converges on the optimal solution for a single routing path. However, they do not account for the cost of moving the relay nodes. In mobile nodes decide to move only when moving is beneficial, but the only position considered is the midpoint of neighbors. The sink is the point of contact for users of the sensor network. Each time the sink receives a question from a user, it first translates the question into multiple queries and then disseminates the queries to the corresponding mobile relay, which process the queries based on their data and return the query results to the sink. The sink unifies the query results from multiple storage.
nodes into the final answer and sends it back to the user. The source nodes in our problem formulation
serve as storage points which cache the data gathered by other nodes and periodically transmit to the
sink, in response to user queries. Such network architecture is consistent with the design of storage
centric sensor networks. Our problem formulation also considers the initial positions of nodes and the
amount of data that needs to be transmitted from each storage node to the sink. We consider the sub
problem of finding the optimal positions of relay nodes for a routing tree given that the topology is
fixed. We assume the topology is a directed tree in which the leaves are sources and the root is the
sink. We also assume that separate messages cannot be compressed or merged; that is, if two distinct
messages of lengths m_1 and m_2 use the same link (s_i, s_j) on the path from a source to a sink, the total
number of bits that must traverse link (s_i, s_j) is $m_1 + m_2$.

4. ALGORITHMS

A) Energy Optimization Framework

In this section, we formulate the problem of Optimal Mobile Relay Configuration (OMRC) in
data-intensive WSNs. Unlike mobile base stations and data mules, our OMRC problem
considers the energy consumption of both mobility and transmission. The Optimal Mobile
Relay Configuration (OMRC) problem is challenging because of the dependence of the solution on multiple factors such as the routing tree topology and the amount of data transferred through each link. For example, when transferring little data, the optimal configuration is to use only some relay nodes at their original positions. Assume the network consists of one source s_{i-1}, one mobile relay node s_i and one sink s_{i+1}. Let the original position of a node s_j be $o_j = (p_j, q_j)$, and let $u_j = (x_j, y_j)$ its final position in configuration U. According to our energy models, the total transmission and movement energy cost incurred by the mobile relay node s_i is $c_i(U) = k\|u_i - o_i\| + am + b\|u_{i+1} - u_i\|$. Now we need to compute a position u_i for s_i that minimizes $C_i(U)$ assuming that $u_{i-1} = o_{i-1}$ and $u_{i+1} = o_{i+1}$; that is, node s_i’s neighbors remain at the same positions in the final configuration U. We calculate position $u_i = (x_i, y_i)$ for node s_i by finding the values for x_i and y_i where the partial derivatives of the cost function $C_i(U)$ with respect to x_i and y_i become zero. Position u_i will be toward the midpoint of positions u_{i-1} and u_{i+1}. The partial derivatives at x_i and y_i, respectively are defined as follows:

\[
\frac{\partial C_i(U)}{\partial x_i} = -2bm(x_{i+1} - x_i) + 2bm(x_i - x_{i-1})
\]
\[
\frac{\partial C_i(U)}{\partial y_i} = -2bm(y_{i+1} - y_i) + 2bm(y_i - y_{i-1})
\]
and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoirable.

B) Static Tree Construction

We construct the tree for our starting configuration using a shortest path strategy. We first define a
weight function w specific to our communication energy model. For each pair of nodes s_i and s_j in
the network, we define the weight of edge $s_i s_j$ as: $w(s_i, s_j) = a + b\|o_i - o_j\|$. We observe that using this
weight function, the optimal tree in a static environment coincides with the shortest path tree rooted at
the sink. So we apply Dijkstra’s shortest path algorithm starting at the sink to all the source nodes to
obtain our initial topology. We improve the routing tree by greedily adding nodes to the routing tree
exploiting the mobility of the inserted nodes. For each node s_out that is not in the tree and each tree
edge $s_i s_j$, we compute the reduction (or increase) in the total cost along with the optimal position of
out if sout joins the tree such that data is routed from s_i to sout to s_j instead of directly from s_i to s_j
using the LocalPos algorithm described in algorithm 1. We repeatedly insert the outside node with
the highest reduction value modifying the topology to include the selected node at its optimal
position, though the node will not actually move until the completion of the tree optimization phase.
After each node insertion occurs, we compute the reduction in total cost and optimal position for each
remaining outside node for the two newly added edges (and remove this information for the edge that no longer exists in the tree). At the end of this step, the topology of the routing tree is fixed and its mobile nodes can start the tree optimization phase to relocate to their optimal positions.

Algorithm 1

Function
LOCALPOS(oi, ui, ui−1, ui+1)
▷ Consider case si moves right
valid ← FALSE;
xi ← (xi−1 + xi+1) − Yi;
if xi > pi then
valid ← TRUE;
else
▷ Consider case si moves left
xi ← (xi−1 + xi+1) + Yi;
if xi < pi then
valid ← TRUE;
end if
end if
▷ Record if new position is different from previous one
if valid then
yi ← (xi−1+xi+1−2pi)

(xi − pi) + qi;
(yi−1+yi+1−2qi)
u′= (xi, yi);
if ‖u′− ui ‖ > threshold then
return (ui, TRUE);
end if
end if
▷ not beneficial to move, stay at original position
return (oi, FALSE);
end function

C) Tree Optimization Algorithm

In this section, we consider the sub problem of finding the optimal positions of relay nodes for an outing tree given that the topology is fixed. We assume the topology is a directed tree in which the leaves are sources and the root is the sink. We also assume that separate messages cannot be compressed or merged; that is, if two distinct messages of lengths m1 and m2 use the same link (si, sj) on the path from a source to a sink, the total number of bits that must traverse link (si, sj) is m1 + m2. Let the network consists of multiple sources, one relay node and one sink such that data is transmitted from each source to the relay node and then to the sink. We modify our solution as follows. Let si be the mobile relay node, S(si) the set of source nodes transmitting to si and sdi the sink collecting nodes from si. The cost incurred by si in this configuration U is:

\[c_i(U) = k‖ui − oi ‖ + ami + bmi‖ui+1 − ui ‖^2 \]

Now we obtain the following positions:

-Bx(√pB2
x + B2
y ± k)
\[xi = pi + \-----------------------------\]
A√pB2
\[
x + B_2 \\
y \\
-By(\sqrt{pB_2} \\
x + B_2 \\
y \pm k)
\]
\[
y_i = q_i + \frac{\sqrt{pB_2}}{A} \\
x + B_2
\]

Where

\[
A = m_i + \sum m_l \\
S(si)
\]

\[
B_x = m_i x_d + \sum m_l x_l + A p_i \\
S(si)
\]

\[
B_y = m_i y_d + \sum m_l y_l + A q_i \\
S(si)
\]

We note that these values correspond to two candidate points moving in each direction (left/right). The optimal position is the valid value yielding the minimum cost. Our algorithm starts by an odd/even labeling step followed by a weighting step. To obtain consistent labels for nodes, we start the labeling process from the root using a breadth first traversal of the tree. The root gets labeled as even. Each of its children gets labeled as odd. Each subsequent child is then given the opposite label of its parent. We define \(m_i \), the weight of a node \(si \), to be the sum of message lengths over all paths passing through \(si \). This computation starts from the sources or leaves of our routing tree. Initially, we know \(m_i = M_i \) for each source leaf node \(si \). For each intermediate node \(si \), we compute its weight as the sum of the weights of its children. Once each node gets a weight and a label, we start our iterative scheme. In odd iterations \(j \), the algorithm computes a position \(u_j i \) for each odd-labeled node \(si \) that minimizes \(C_i(U_j) \) assuming that \(u_j i-1 = u_{j-1} i-1 \) and \(u_j i+1 = u_j i+1 \); that is, node \(si \)’s even numbered neighboring nodes remain in place in configuration \(U_j \). In even-numbered iterations, the controller does the same for even-labeled nodes. The algorithm behaves this way because the optimization of \(u_j i\) requires a fixed location for the child nodes and the parent of \(si \). By alternating between optimizing for odd and even labeled nodes, the algorithm guarantees that the node \(si \) is always making progress towards the optimal position \(u_i \). Our iterative algorithm is shown in algorithm 2.

Algorithm 2

procedure OPTIMALPOSITIONS(U0)

converged ← false;

j ← 0;

repeat

anymove ← false;

j ← j + 1;

▷ Start an even iteration followed by an odd iteration

for idx = 2 to 3 do

for i = idx to n by 2 do

(uj i ,moved) ← LOCALPOS(oi, S(si), sd i);

anymove ← anymove OR moved

end for
end for
converged ← NOT anymove
until converged
end procedure

5. IMPLEMENTATION

6. CONCLUSION

The main objective of this paper is energy conservation which is holistic in that the total energy consumed by both mobility of relays and wireless transmissions is minimized, which is in contrast to existing mobility approaches that only minimize the transmission energy consumption. The tradeoff in energy consumption between mobility and transmission is exploited by configuring the positions of mobile relays. We develop two algorithms that iteratively refine the configuration of mobile relays. The first improves the tree topology by adding new nodes. It is not guaranteed to find the optimal topology. The second improves the routing tree by relocating nodes without changing the tree topology. It converges to the optimal node positions for the given topology. Our algorithms have efficient distributed implementations that require only limited, localized synchronization. In this paper, we proposed a holistic approach to minimize the total energy consumed by both mobility of relays and wireless transmissions. Most previous work ignored the energy consumed by moving mobile relays. When we model both sources of energy consumption, the optimal position of a node that receives data from one or multiple neighbors and transmits it to a single parent is not the midpoint of
its neighbors; instead, it converges to this position as the amount of data transmitted goes to infinity. Ideally, we start with the optimal initial routing tree in a static environment where no nodes can move. However, our approach can work with less optimal initial configurations including one generated using only local information such as greedy geographic routing. Our approach improves the initial configuration using two iterative schemes. The first inserts new nodes into the tree. The second computes the optimal positions of relay nodes in the tree given a fixed topology. This algorithm is appropriate for a variety of data-intensive wireless sensor networks. It allows some nodes to move while others do not because any local improvement for a given mobile relay is a global improvement. This allows us to potentially extend our approach to handle additional constraints on individual nodes such as low energy levels or mobility restrictions due to application requirements. Our approach can be implemented in a centralized or distributed fashion. Our simulations show it substantially reduces the energy consumption by up to 45 percent.

REFERENCES

AUTHORS’ BIOGRAPHY

Shaik Mariyam Fatima is a student pursuing M.Tech(CSE) in Eswar College of Engineering, Narasaraopet, Guntur, India. She also completed B.Tech in Information Technology. She also attended “soft skills and employability skills” workshop.

Ratna Raju Mukiri M.Tech(CSE), S.E.T.,(P.hD)., is having 10+ years of experience in the field of teaching in various Engineering Colleges and PG colleges. At present he is working as Asst. Prof. in Eswar College of Engineering, Narasaraopet, Guntur, India. He published 4 international journals and attended 1 national conference and 1 international conference and qualified state eligibility test twice in 2012 & 2013. He has given many guest lecturers to M.C.A. students in the subject areas of Micro processors, Artificial Intelligence, data structures etc., He also guided many B.Tech, MCA and M.Sc(CS) projects. He attended two weeks ISTE workshop on “Data Base Management Systems” conducted by IIT Bombay. His interested areas are data mining, mobile computing software engineering, Computer Networks, etc.