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Abstract: In this paper, we consider the problem of segmentation of large collections of images. We propose a 

semi supervised optimization model that determines an efficient segmentation of many input images. The 

advantages of the model are twofold. First, the segmentation is highly controllable by the user so that the user 

can easily specify what he/she wants. This is done by allowing the user to provide, either offline or interactively, 
some (fully or partially) labeled pixels in images as strong priors for the model. Second, the model requires only 

minimal tuning of model parameters during the initial stage. Once initial tuning is done, the setup can be used 

to automatically segment a large collection of images that are distinct but share similar features.

 

1. BACKGROUND 

In this project we are going to segment the large collection of data by two fold First, the segmentation 
is highly controllable by the user so that the user can easily specify what he/she wants. The model 

requires only minimal tuning of model parameters during the initial stage. Once initial tuning is done, 

the setup can be used to automatically segment a large collection of images. 

1.1 Segmentation  

All image processing operations generally aim at a better recognition of objects of interest, i. e., at 

finding suitable local features that can be distinguished from other objects and from the background. 

The next step is to check each individual pixel to see whether it belongs to an object of interest or not. 
This operation is called segmentation and produces a binary image.  

 

Fig 2.1. Image Segmentation 

A pixel has the value one if it belongs to the object; otherwise it is zero. Segmentation is the operation 

at the threshold between low-level image processing and image analysis. After segmentation, it is 
known that which pixel belongs to which object. The image is parted into regions and we know the 

discontinuities as the boundaries between the regions. The different types of segmentations are 

1.1.1 THRESHOLDING 

The simplest method of image segmentation is called the thresholding method. This method is based 
on a clip-level (or a threshold value) to turn a gray-scale image into a binary image.  

The key of this method is to select the threshold value (or values when multiple-levels are selected). 

Several popular methods are used in industry including the maximum entropy method, Otsu's method 
(maximum variance), and k-means clustering. 

Recently, methods have been developed for thresholding computed tomography (CT) images. The 

key idea is that unlike Otsu's method, the thresholds are derived from the radiographs instead of the 
(reconstructed) image. 
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Fig 2.2. Thresholding Based Image Segmentation 

1.1.2 REGION-BASED METHODS 

It focus attention on an important aspect of the segmentation process missed with point-based 
techniques. There a pixel is classified as an object pixel judging solely on its gray value independently 

of the context. This meant that isolated points or small areas could be classified as object pixels, 

disregarding the fact that an important characteristic of an object is its connectivity.If we use not the 

original image but a feature image for the segmentation process, the features represent not a single 
pixel but a small neighborhood, depending on the mask sizes of the operators used.  

At the edges of the objects, however, where the mask includes pixels from both the object and the 

background, any feature that could be useful cannot be computed. The correct procedure would be to 
limit the mask size at the edge to points of either the object or the background. But how can this be 

achieved if we can only distinguish the object and the background after computation of the feature? 

Obviously, this problem cannot be solved in one step, but only iteratively using a procedure in which 
feature computation and segmentation are performed alternately.  

In the first step, the features are computed disregarding any object boundaries. Then a preliminary 

segmentation is performed and the features are computed again, now using the segmentation results to 

limit the masks of the neighborhood operations at the object edges to either the object or the 
background pixels, depending on the location of the center pixel. To improve the results, feature 

computation and segmentation can be repeated until the procedure converges into a stable result.  

 

Fig 2.4. Region Based Image Segmentation 

1.1.3 MODEL BASED SEGMENTATION 

The central assumption of such an approach is that structures of interest/organs have a repetitive form 

of geometry. 

Therefore, one can seek for a probabilistic model towards explaining the variation of the shape of the 

organ and then when segmenting an image impose constraints using this model as prior. Such a task 

involves  

(i) registration of the training examples to a common pose,  

(ii) probabilistic representation of the variation of the registered samples, and  

(iii) Statistical inference between the model and the image.  

State of the art methods in the literature for knowledge-based segmentation involve active 
shape and appearance models, active contours and deformable templates and level-set based methods. 
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Module1. 

Separate labeled and unlabeled pixels 

Step 1.  RGB to Gray Conversion 

Take the input image. And it converts into grayscale image. 

RGB Images 

 An RGB image represents each pixel color as a set of three values, representing the red, 

green, and blue intensities that make up the color.  

 In MATLAB, the red, green, and blue components of an RGB image reside in a single m-by-

n-by-3 array.  

 m and n are the numbers of rows and columns of pixels in the image, and the third dimension 

consists of three planes, containing red, green, and blue intensity values.  

 For each pixel in the image, the red, green, and blue elements combine to create the pixel‟s 

actual color. 

 An RGB array can be of   

 Class double, in which case it contains values in the range [0, 1]. 

 Class uint8, in which case the data range is [0,255]. 

 For uint16, values range from [0, 65535]. 

Grayscale Images 

 Also referred to as monochrome or one-color images. 

 Contain only brightness information. No color information. 

 Typically contain 8 bits/pixel data, which corresponds to 256 (0 to 255) different brightness 
(gray) levels 

 Why 8 bits/pixel? 

 Provides more than adequate brightness resolution. 

 Provides a “noise margin” by allowing approximately twice gray levels as   required. 

 Byte (8-bits) is the standard small unit in computers 

 However, there are applications such as medical imaging or astronomy that requires 12 or 16 

bits/pixel. 

 Useful when a small section of the image is enlarged. 

 Allows the user to repeatedly zoom a specific area in the image. 

 

Fig 2.7. RGB 2 Gray Scale Conversion 
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Step 2.   Normalization and Enhancement 

Give the enhancing factor between (0 - 3) in point variables e.g. (0.5, 1.5). Depends upon enhancing 

factor enhance of the image. 

Normalization 

In image processing, normalization is a process that changes the range of pixel intensity values. 

Applications include photographs with poor contrast due to glare, for example. Normalization is   

sometimes called contrast stretching. In more general fields of data processing, such as digital signal 

processing, it is referred to as dynamic range expansion. 

The purpose of dynamic range expansion in the various applications is usually to bring the image, or 

other type of signal, into a range that is more familiar or normal to the senses, hence the term 

normalization. Often, the motivation is to achieve consistency in dynamic range for a set of data, 

signals, or images to avoid mental distraction or fatigue. 

Image Enhancement 

Image enhancement is the improvement of digital image quality (wanted e.g. for visual inspection or 

for machine analysis), without knowledge about the source of degradation. If the source of 

degradation is known, one calls the process image restoration. Both are iconical processes, viz. input 

and outputs are images.  

Many different, often elementary and heuristic methods are used to improve images in some sense. 

The problem is, of course, not well defined, as there is no objective measure for image quality. Here, 

we discuss a few recipes that have shown to be useful both for the human observer and/or for machine 

recognition. These methods are very problem-oriented: a method that works fine in one case may be 

completely inadequate for another problem.  

Apart from geometrical transformations some preliminary grey level adjustments may be indicated, to 

take into account imperfections in the acquisition system. This can be done pixel by pixel, calibrating 

with the output of an image with constant brightness. Frequently space-invariant grey value 

transformations are also done for contrast stretching, range compression, etc. The critical distribution 

is the relative frequency of each grey value, the grey value histogram. Examples of simple grey level 

transformations in this domain are:  

 

Fig 2.8. Gray Level Transformations 

Grey values can also be modified such that their histogram has any desired shape, e.g flat (every grey 

value has the same probability). All examples assume point processing, viz. each output pixel is the 

function of one input pixel; usually, the transformation is implemented with a look-up table: 

http://ikpe1101.ikp.kfa-juelich.de/briefbook_data_analysis/node130.html#129
http://ikpe1101.ikp.kfa-juelich.de/briefbook_data_analysis/node105.html#104


T Srimallika & B. Sivanageswara rao 

 

 
International Journal of Research Studies in Science, Engineering and Technology [IJRSSET]                89   

 

Fig 2.9. Look Up Table 

Physiological experiments have shown that very small changes in luminance are recognized by the 
human visual system in regions of continuous grey value, and not at all seen in regions of some 

discontinuities. Therefore, a design goal for image enhancement often is to smooth images in more 

uniform regions, but to preserve edges. On the other hand, it has also been shown that somehow 
degraded images with enhancement of certain features, e.g. edges, can simplify image interpretation 

both for a human observer and for machine recognition. A second design goal, therefore, is image 

sharpening. All these operations need neighbourhood processing, viz. the output pixel is a function of 

some neighbourhood of the input pixels: 

 

Fig 2.10. Neighbourhood Operation 

These operations could be performed using linear operations in either the frequency or the spatial 

domain. We could, e.g. design, in the frequency domain, one-dimensional low or high pass filters ( 

Filtering), and transform them according to McClellan's algorithm to the two-dimensional case.  

Unfortunately, linear filter operations do not really satisfy the above two design goals; in this book, 

we limit ourselves to discussing separately only (and superficially) Smoothing and Sharpening.  

Here is a trick that can speed up operations substantially, and serves as an example for both point and 

neighbourhood processing in a binary image: we number the pixels in a  3 X 3 neighbourhood like:  

 

Fig 2.11. 3 X 3 Neighbourhood Examble 

http://ikpe1101.ikp.kfa-juelich.de/briefbook_data_analysis/node86.html#85
http://ikpe1101.ikp.kfa-juelich.de/briefbook_data_analysis/node268.html#267
http://ikpe1101.ikp.kfa-juelich.de/briefbook_data_analysis/node258.html#257
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and denote the binary values (0,1) by bi (i = 0,8); we then concatenate the bits into a 9-bit word, like 

b8b7b6b5b4b3b2b1b0. This leaves us with a 9-bit grey value for each pixel, hence a new image (an 8-bit 
image with b8 taken from the original binary image will also do). The new image corresponds to the 

result of a convolution of the binary image, with a 3 X 3 matrix containing as coefficients the powers 

of two. This neighbor image can then be passed through a look-up table to perform erosions, dilations, 
noise cleaning, skeletonization, etc.  

Apart from point and neighbourhood processing, there are also global processing techniques, i.e. 

methods where every pixel depends on all pixels of the whole image. Histogram methods are usually 
global, but they can also be used in a neighbourhood.  

 

Fig 2.12. Image Normalization & Enhancement 

Step 3.  Binary Image Conversion 

Obtain threshold value by taking mean of original image. Depends upon the threshold value binarized 

the original image. Generate the white image. Check which are the locations are equal to 255 in 
threshold image, that same location pixels are in enhance image are above the threshold value means 

that location values are replaced by 0. 

Binary Image 

 In a binary image, each pixel assumes one of only two discrete values.  

 Essentially, these two values correspond to on and off.  

 A binary image is stored as a two-dimensional matrix of 0‟s (off pixels) and 1‟s (on pixels).  

 Each pixel is just black or white. Since there are only two possible values for each pixel 

(0,1), we only need one bit per pixel. 

 Binary images are often created from gray-scale images via a threshold operation. 

 White („1‟) if pixel value is larger than threshold. 

 Black („0‟) if it is less. 

 A binary image is a digital image that has only two possible values for each pixel 

 Binary images are also called bi-level or two-level 

 A binary image is usually stored in memory as a bitmap, a packed array of bits 
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 Binary images often arise in digital image processing as masks or as the result of certain 

operations such as segmentation, thresholding. 

 

Fig 2.13. Gray Scale to Binary Image Convertion 

Step 4. Labeled Objects 

Give the required size of labeled image. Require size is compared with labeled objects, if the given 

labeled value is greater than the each cell it will be replaced with 1.else it will be replaced with 0.  

Labeled images are integer images where the values correspond to different regions. I.e., region 1 is 

all of the pixels which have value 1, region two is the pixels with value 2, and so on. By convention, 
region 0 is the background and processed differently. 

Connected-Component Labeling 

The bwlabel and the bwlabeln functions perform connected-component labeling, which is a method 
for identifying each object in a binary image. The bwlabel function supports 2-D inputs only; the 

bwlabeln function supports inputs of any dimension. 

These functions return a matrix, called a label matrix. A label matrix is an image, the same size as the 

input image, in which the objects in the input image are distinguished by different integer values in 
the output matrix.  

For example, bwlabel can identify the objects in this binary image. 

BW = [0 0 0 0  0  0  0  0; 

0  1  1  0  0  1  1  1; 

0  1  1  0  0  0  1  1; 

0  1  1  0  0  0  0  0; 

0  0  0  1  1  0 0  0; 

0  0 0 1 1  0  0  0;  

0  0  0  1  1  0  0  0; 

0 0 0 0  0  0  0  0]; 

X = bwlabel(BW,4) 

X = 

0  0 0  0 0  0  0  0 

0 1 1  0  0  3  3  3 

0 1 1  0 0 0 3  3 

0 1 1   0  0  0  0  0 

0 0 0  2 2  0  0  0 

0  0  0   2  2  0  0  0 

0  0  0   2  2  0  0  0 

0  0  0   0  0  0  0  0 
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In the output matrix, the 1‟s represent one object, the 2‟s a second object, and the 3‟s a third. (If you 

had used 8-connected neighborhoods (the default), there would be only two objects, because the first 
and second objects would be a single object, connected along the diagonal.) 

 

 

Fig 2.14. Labeled Components 

Step 5.  Labeled and Unlabeled Image 

Give the required size of labeled image. Require size is compared with labeled objects , what are the 
objects are above the required size of labeled image that objects are replaced by 1 otherwise 0.now we 

get the labeled and unlabeled image. 

Module 2. Similarity Measure 

Two kinds of similarity measures, namely, geometric and photometric, are considered. The former is 

based on pixel locations, whereas the latter is based on color features. 

 For each pixel , its geometric neighbor is defined as, 

 

where is a constant controlling the size of the window, and  is the vector maximum norm. 

We often set  so that a window around pixel  is used. Note that and the 

geometric neighbor is not defined across two images. The geometric similarity  is defined as  

 

where  is a normalization constant such that , and  is computed as the sample 

variance of the geometric locations within . 

For each pixel  , let be its feature vector. We use the RGB values over a  window 

around pixel to construct a feature vector of dimension 27. Then, the within-image photometric 

neighbor  is defined to be the top 4 pixels within the  window around pixel 

(excluding pixel itself), whose feature vectors are nearest to  (in Euclidean norm). Using a larger 

window size allows us to connect photo metrically similar pixels that are further apart. However, 

doing so will increase the computational cost. The choice of the size 17  17 is a balance between 

both extremes. The within-image photometric similarity is defined as 

  

where  is a normalization constant such that , and is computed as the sample 

variance of the photometric features within . 

Module 3. Optimization 

Each unlabeled pixel can be connected to a labeled pixel through a sequence of directed edges, each 

of which connects a pixel to one of its neighbors in the same image or a different image. 
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Let for be two given multichannel images. Their sizes are not necessarily the same. Let  

be the set of all pixels in image . Let be the set of all unlabeled pixels in image . Let be the 

set of pixels in image labeled to one of the classes by the user. Thus  Here, we 
allow both images to contain labeled and unlabeled pixels for the sake of generality. The set of 

labeled pixels is divided into  , where is the set of pixels that are labeled with class 

, for . 

Let if , and let if , so that is an index referring to an image different from 

the image indexed by . For each pixel and each pixel , let be a similarity 

score between the pair of pixels, for . When , the similarity is computed within 

image ; when , the similarity is computed across two images. For each , it is assumed 
that the similarity scores are normalized such that 

 

For each pixel , let be a set of pixels in image , which is called the neighbor of 

in . The within-image neighbor and the across-image neighbor are defined respectively by 

and . Presumably, these pixels have high similarity scores with . For 

each , let be the degree of membership of pixel  to class . It is required 

that  we also denote by  the vector . 

The basic idea of the model is that the memberships of similar pixels should be similar. For each 

unlabeled pixel , the membership to class inferred from its neighbors is the weighted 
average, i.e. 

 

4.3 Screenshots 

1. First Image 

 
2. Second Image 
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3. Third Image 

 
4. Fourth Image 

 
5. Fifth Image 

 

6. Performance of Probability Error 
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7.  Performance of Accuracy 

 
8. First Image 

 
9. Second Image 

 
10 . Third Image 
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11. Performance of Probability Error 

 
12. Performance of Accuracy 

 

13. Performance of Hausdrouf Distance 

 

CONCLUSION 

In this paper, we have proposed and developed a semiautomatic optimization model for segmentation 
of multiple images. The model has a quadratic objective function and linear constraints. Due to the 

discrete maximum/minimum principles, the optimality conditions simply boil down to solving linear 

systems (as opposed to the nonlinear Karush–Kuhn–Tucker systems 

for general quadratic programming problems). In our applications, the two parameters can be easily 

tuned. Once initial tuning is done, the setup can be used to segment all other images within the 

collection automatically. The quality of the results is also high. However, it relies on the logical 
assumption that the different classes can be separated in the feature space and that the user-supplied 

samples can represent each class well. 
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