
International Journal of Research Studies in Science, Engineering and Technology [IJRSSET]

Volume 1, Issue 1, April 2014, PP 87-92

©IJRSSET 87

Efficient Load Balancing Using Intelligent Decision on Process & VM

Migration

Sharang Telkikar
Department of Computer Engineering

and Information Technology

College of Engineering,
Pune, 411005, India

telkikarsp09.comp@coep.ac.in

Shreyas Talele
Department of Computer Engineering

and Information Technology

College of Engineering,
Pune, 411005, India

talelesr09.comp@coep.ac.in
Siddharth Vanarse

Department of Computer Engineering

and Information Technology

College of Engineering,

Pune, 411005, India
vanarsess09.comp@coep.ac.in

Amit Joshi
Department of Computer Engineering

and Information Technology

College of Engineering,

Pune, 411005, India
adj.comp@coep.ac.in

1. INTRODUCTION

1.1. Load Balancing

It is necessary to understand load to understand
Load balancing[1]. Load may be described as

number of processes running in queue, load

average, CPU utilization, memory utilization, and
amount of free CPU time etc. or any combination of

the above parameters. Load balancing can be done

among interconnected computers in a network or
among individual processors in a parallel machine.

Load balancing is nothing but the efficient

allocation of tasks or jobs to processors for

increasing overall processor utilization and
throughput.

Actually load balancing is done by VM migration or

process migration. But to balance the load it is
necessary to measure the load of individual node in

network or in a distributed environment. For

deciding the load on a node, above mentioned

factors in a definition of load are calculated. After
calculating the load of node individually, nodes are

marked as underloaded/free and overloaded/busy

node.

Now in order to balance the load, process or VM is

transferred from heavy node to lightly loaded node.

In this way load can be balanced in a network of

work station or in a distributed environment.

1.2. Process Migration

One of the ways to achieve load balancing in a

distributed system is through transferring a process
form heavily loaded node to lightly loaded node. It

is very useful mechanism for balancing the load on

distributed system.

There are two types of process migration[3].
(1)Non-Preemptive Process Migration (2)

Preemptive Process migration. Non-preemptive

process transfers involve the transfer of processes
that have not begun execution and hence do not

require the transfer of the process’s state. On the

other hand, preemptive process transfers involve the

transfer of a process that is partially executed. This
transfer is an expensive operation as the collection

of a process’s state (which can be quite large and

complex) can be difficult. Typically, a process state
consists of a virtual memory image, a process

control block, unread I/O buffers and messages, file

pointers, timers that have been set, etc. In both types
of transfers, information about the environment in

which the process will execute must be transferred

to the receiving node.

1.3. DMTCP

DMTCP stands for Distributed Multi Threaded

Check-Pointing. It is a tool to checkpoint the state

of multiple simultaneous applications. It operates

directly on the user binary executable, without any
Linux kernel modifications. It provides the

Efficient Load Balancing Using Intelligent Decision on Process & VM Migration

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 88

Checkpoint-Restart feature which can be used for
migration of the process.

2. VIRTUALIZATION

2.1 Hypervisor

The hypervisor is a program that gives the feature to
run different virtual machines on single computer.

Here they share single hardware host. Each guest

system seems to have its own processor and
memory. There are two types of hypervisors:

1) Type 1 also called as native hypervisors run

directly on the host’s hardware with VM resources

provided by the hypervisor. This offers higher level
of virtualization efficiency. Here guest operating

system runs on another level above the hypervisor.

This represents the classic implementation of
virtual machine architectures. Usually these

hypervisors come with security and resource

management. Examples of type 1 hypervisor are

Microsoft Hyper-V, Citrix Systems XenServer.

2) Type 2 (or hosted) hypervisors run on operating

system of the host to provide virtualization services

such as memory management, I/O services. These
hypervisors are generally used where less efficiency

is tolerable generally on client side. KVM and

VirtualBox are examples of Type 2 hypervisors.

2.2. Kernel-based Virtual Machine (KVM)

It is a virtualization infrastructure for the Linux

kernel. KVM[8] supports native virtualization on

processors with hardware virtualization extensions.
It is full virtualization solution for Linux hardware

having virtualization extension. We can run

different virtual machines using OS images. Here
each VM has private network card, graphics adaptor

and disk. By itself, KVM does not perform any

emulation. Instead, a user space program uses the
/dev/kvm interface to set up the guest VM’s address

space, feeds it simulated I/O and maps its video

display back onto the host’s.

2.3. VM Migration

Another way to balance load in a distributed system

is to transfer a VM form heavily loaded node to

lightly loaded node. VM migration is simply
moving the running VM on a physical machine

(source host) to another physical machine (target

host) without disturbing any active network

connections, while the VM is running on the source
host, even after the VM is moved to the target host.

It is considered live, since the original VM is

running, while the migration is in progress. A guest
can be migrated between any hosts. Naturally, a 64-

bit guest can only be migrated to a 64-bit host, but a

32-bit guest can be migrated to 32 or 64 bit host.

2.4. Virt-Manager

It is a desktop tool for managing virtual machines. It

provides the ability to control the lifecycle of

existing machines. Virtual Machine Manager allows
users to:

1. Create, edit, start and stop VMs

2. See performance and utilization statistics for each

VM

3. View and control of each VM’s console

4. Use KVM, Xen or QEMU virtual machines,

running either locally or remotely.

5. View all running VMs and hosts and their live

performance and resource utilization statistics.

2.5 Network File System (NFS)

It was developed to allow machines to mount a disk
partition on a remote machine as if it were a local

disk. It allows user to access files over a network as

if local storage is accessed. It allows for fast,
seamless sharing of files across a network. When

VM is moved from one host to another then host

write to the same image file.

3. IMPLEMENTATION

3.1. Load estimation and information exchange

policy

Traditionally, the load of a node at given time was

described simply by CPU queue length. CPU queue

length refers to the number of processes which are

either executing or waiting to be executed. The
processes which are waiting for other system

resources are not included. So the CPU queue

length does not reflect directly memory utilization.
In the proposed algorithm, CPU utilization and

memory utilization are used. The system statistics

such as CPU utilization and memory utilization of a

node changes during the life of processes. For
example, the CPU utilization may be high in one

second but low in the next second. Therefore it is

reasonable to average these statistics over several
seconds. In the proposed algorithm, CPU utilization

(cpu u) and memory utilization (mem u) are

considered as load information parameters to
measure load of a node. The following equation is

used to calculate each parameter

Sharang Telkikar et al.

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 89

t
avgl

pt)+....+p2+(p1
)(

Where

1. (avg) is the average load metric of the cpu
utilization over the previous t seconds for a

particular node.

2. p is the information parameter of load. (cpu
utilization).

3. p1,…,pt is the value cpu utilization in a
previous one second interval.

4. It is the number of time intervals.

3.2. Load classification

The first step in the process transfer determination

is to classify the load at each of the nodes[5]. The

CPU utilization is divided into three bands: Lightly

loaded, moderately loaded and heavily loaded based
on the threshold value.

The calculation of the threshold for these

parameters is done as follow:

The first step in the process transfer determination

is to classify the load at each of the nodes. The CPU

utilization is divided into three bands: Lightly

loaded, moderately loaded and heavily loaded based
on the threshold value.

The calculation of the threshold for these

parameters is done as follows:

Calculate load average of each parameter (cpu u)

over all nodes. The equation is:

n
avgl

pn)+....+p2+(p1
)(

where

1. (avg) is the average load of a given parameter
over all nodes.

2. p is the parameter of load cpu utilization

3. l1, …, ln are the current load of cpu utilization of
each node derived by load estimation policy

4. n is the number of nodes.

And calculation of moderate band:

The threshold is the average of CPU usage of all
hosts. The moderately loaded band is created by

adding and subtracting a value, which is the

difference between the average and the mean of the
maximum and minimum of the CPU usage of the

hosts or of 20 percent width, across the threshold,

whichever is maximum.

After the calculation of three bands classification is

done as diagram:

3.3. Migration Vector Calculation

Now for the nodes that are not in moderate region,

load balancing is to be applied .This is achieved by

migrating process or VM from heavily loaded node
to lightly loaded node so that all the nodes lie in the

moderate region. Both the systems try to achieve a

moderately loaded band. The value is calculated by

taking the difference between the threshold and the
current CPU utilization of the lightly loaded node.

Figure 1. Each node is assigned one of three regions.

Darker region indicates more load on node

3.4. Migration Policy

After calculating migration vector we need to take

into consideration cpu utilization of all the vm’s that

are running on heavy node and the cpu utilization of

those processes that are invoked by DMTCP . Now
the process or VM whose cpu utilization is closer to

the migration vector calculated in above phase

should be migrated.

If the choice is VM then QEMU-KVM’s live

migration feature is used. The libvirt api virsh

command is used for this live migration. And if
choice is process then that process is checkpointed

and that process is migrated on light node using

checkpoint restart feature of DMTCP.

Following flowchart shows the description of policy
of program execution

Efficient Load Balancing Using Intelligent Decision on Process & VM Migration

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 90

Figure 3. Architecture containing cluster nodes and
central host [4]

In this architecture, one central host is shown which

has both facilities of process migration using

DMTCP and also live migration using QEMU-

KVM. Thus it is connected to all the other nodes in
given cluster

Figure 2. Flowchart of different phases of algorithm

Experimental Setup and Result Analysis

For the assessment of performance of proposed
algorithm,

Virtual platform :KVM and storage system: NFS

was used. QEMU-KVM and Virtual Machine

Manger were installed to manage and migrate VM.
DMTCP tool is used to checkpoint the process and

migrate it to another node. Three client machines of

configuration : Intel Core i5-2400 3.10 GHz * 4 and

Memory: 3 GB were used on which libvert, dmtcp,
nfs server,qemu-kvm packages were installed.

By applying proposed algorithm we got following

results (CPU Utilization in percentage). Table 1,2,3
and 4 shows the nodes and their corresponding CPU

utilization after the three iterations of the algorithm.

Followed by Fig,4 which shows the variation in

CPU utilization of nodes and at the end all lie in
moderate region.

Table 1. State of VMs and Processes on Nodes

Nodes VM/Process

Name

CPU
Utilization on

respective
Node

CPU
Utilizati

on of
Node

Node 1 N1V1

N1V2

N1P

51.50

11.02

3.00

46.40

Node 2 N2V1

N2V2

N2P

47.52

7.23

20.06

21.09

Node 3 N3V1

N3V2

N3P

96.67

5.16

25.62

63.42

By using the formulae given in load estimation, load

classification, calculation of moderate band, lower
and upper limit of moderate band is calculated.

Node 1 is in moderate band, Node 2 is in light band

and Node 3 is in heavy band. Hence process N3P

(according to migration vector calculation) is
migrated from Node 3 to node 2 as shown in Table

2.

This process is repeated until all the nodes fall in
moderate band. In Table 2, Node 1 is in moderate

band, Node 2 is in heavy band and Node 3 is in light

band. Hence VM N2V2 (according to migration
vector calculation) is migrated from Node 2 to Node

3 as shown in Table 3.

Table 2. State of VMs and Processes on Nodes

Nodes VM/Process

Name

CPU
Utilization

on
respective

Node

CPU
Utilizatio
n of Node

Sharang Telkikar et al.

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 91

Node 1 N1V1

N1V2

N1P

50.28

12.32

2.47

45.20

Node 2 N2V1

N2V2

N2P

N3P

49.60

6.59

22.25

23.46

55.27

Node 3 N3V1

N3V2

96.03

4.24

28.69

Now in Table 3, Node 1 is in moderate band, Node

2 is in heavy band and Node 3 is in light band.

Hence Process N2P is migrated from Node 2 to
Node 3 as shown in Table 4.

Table 3. State of VMs and Processes on Nodes

Nodes VM/Process

Name

CPU
Utilization on

respective
Node

CPU
Utilizati

on of
Node

Node 1 N1V1

N1V2

N1P

50.28

12.32

2.47

45.20

Node 2 N2V1

N2V2

N2P

N3P

49.60

6.59

22.25

23.46

55.27

Node 3 N3V1

N3V2

96.03

4.24

28.69

Now in Table 4, all the nodes lie in moderate band

and hence load balancing is achieved.

Figure 4 shows that after applying algorithm,

dynamic load balancing is achieved as all nodes lie
in moderate region.

Now the above depicted algorithm can be applied

again after waiting for some fixed time margin.

Table 4. State of VMs and Processes on Nodes

Nodes VM/Process

Name

CPU
Utilization on

respective
Node

CPU
Utilizati

on of
Node

Node 1 N1V1

N1V2

N1P

51.63

10.62

3.23

44.17

Node 2 N2V1

N3P

46.21

31.43

39.73

Node 3 N3V1

N3V2

N2V2

N2P

95.60

2.57

2.31

24.70

42.39

Figure 3. Variation in CPU utilization of nodes

4. CONCLUSION AND FUTURE WORK

Till date load balancing was achieved either by
considering only process migration or VM

migration but this proposed algorithm gives an

intelligent decision whether to migrate process or
VM and dynamically balances the load. Initially all

the nodes in the network were imbalanced. After

applying the algorithm, all nodes fall in moderate
band. Thus load balancing is achieved.

In this algorithm, we migrate VM or processes that

are running on node itself. Further load balancing

can be improved by migrating processes between
different virtual machines running on different

nodes. This will improve performance of dynamic

load balancing.

Here we mainly focused on CPU utilization

parameter, but we can also consider other

parameters such as CPU queue length, size of

Efficient Load Balancing Using Intelligent Decision on Process & VM Migration

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 92

process, dependency on host and time required for
migration.

REFERENCES

[1] Asst. Prof. Vatsal Shah, Asst. Prof. Kanu Patel,
“Load Balancing Algorithm by Process

Migration in Distributed Operating System,”

IRACST- International Journal of Computer
Science and Information Technology &

Security ISSN: 2249-9555 Vol. 2, No.6,

December 2012.

[2] Rohan Garg and Komal Sodha and Gene
Cooperman,” A Generic Checkpoint-Restart

Mechanism for Virtual Machines”

http://arxiv.org/abs/1212.1787v1.
[3] Vatsal Shah, Viral kapadia, “Load Balancing

Algorithm by Process Migration in Distributed

Operating System,” International Journal of
Soft Computing and Engineering (IJSCE),

ISSN: 2231-2307, Volume-2, Issue-1, March

2012.

[4] Tal Maoz, Amnon Barak, Lior Amar K. Elissa,
“Combining Virtual Machine Migration with

Process Migration for HPC on Multi-Clusture

Grids,” 2008 IEEE International Conference on
Cluster Computing 978-1-4244-2640-9/08

[5] Ke Yang, Jianhua Gu,Tianhai Zhao,Guofei

Sun, “An Optimized Control Strategy for Load

Balancing based on Live Migration of Virtual
Machine,” 2011 Sixth Annual ChinaGrid

Conference, 978-0-7695-4472-4/11, DOI

10.1109/ChinaGrid.2011.28.
[6] Anja Strunk,“Cost of Virtual Machine Live

Migration : A Survey,” 2012 IEEE Eighth

World Congress on Services, 978-0-7695-
4756-5/12, DOI 10.1109/SERVICES.2012.23.

[7] Amit Joshi,Akshay Chandak,Krishnakant Jaju,

“Dynamic Load Balancing of Virtual Machines

using QEMU-KVM” International Journal of
Computer Applications (0975 – 8887) Volume

46– No.6, May 2012.

[8] KVM Kernel Based Virtual Machine Red Hat,
Inc. 2009

